Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
SPECIAL TOPIC—Optical field manipulation |
Prev
Next
|
|
|
Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect |
Hongzhen Tang(唐宏珍)1, Peng Hu(胡鹏)1, Da-Jian Cui(崔大健)2, Hong Xiang(向红)1,†, and Dezhuan Han(韩德专)1,‡ |
1. Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 401331, China; 2. Chongqing Key Laboratory of Core Optoelectronic Devices for Quantum Communication, Chongqing Optoelectronics Research Institute, Chongqing 400060, China |
|
|
Abstract By using the difference of the band structure for the TE and TM waves in the metal—dielectric photonic crystals beyond the light cone and the birefringence of the anisotropic crystal, a one-dimensional photonic system is constructed to realize the bound states in the continuum (BICs). In addition to the BICs arising from the polarization incompatibility, the Friedrich—Wintgen BICs are also achieved when the leaking TM wave is eliminated due to the destructive interference of its ordinary and extraordinary wave components in the anisotropic crystal. A modified scheme favorable for practical application is also proposed. This scheme for BICs may help to suppress the radiation loss in the metal—dielectric photonic crystal systems.
|
Received: 22 March 2022
Revised: 24 April 2022
Accepted manuscript online:
|
PACS:
|
42.81.Gs
|
(Birefringence, polarization)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
42.25.Hz
|
(Interference)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074049 and 12147102). |
Corresponding Authors:
Hong Xiang, Dezhuan Han
E-mail: xhong@cqu.edu.cn;dzhan@cqu.edu.cn
|
Cite this article:
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专) Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect 2022 Chin. Phys. B 31 104209
|
[1] Liu N, Tang M L, Hentschel M, Giessen H and Alivisatos A P 2011 Nat. Mater. 10 631 [2] Noda S 2010 J. Opt. Soc. Am. B 27 B1 [3] Lin Y, Feng T H, Lan S, Liu J and Xu Y 2020 Phys. Rev. Appl. 13 064032 [4] von Neumann J and Wigner E 1929 Phys. Z. 30 465 [5] Friedrich H and Wintgen D 1985 Phys. Rev. A 32 3231 [6] Bulgakov E and Sadreev A 2011 Phys. Rev. B 83 235321 [7] Zhang J M, Braak D and Kollar M 2012 Phys. Rev. Lett. 109 116405 [8] Molina M I, Miroshnichenko A E and Kivshar Y S 2012 Phys. Rev. Lett. 108 070401 [9] Linton C M and McIver P 2007 Wave Motion 45 16 [10] Marinica D C, Borisov A G and Shabanov S V 2008 Phys. Rev. Lett. 100 183902 [11] Hsu C W, Zhen B, Stone A D, Joannopoulos J D and Soljacic M 2016 Nat. Rev. Mater. 1 16048 [12] He Y, Guo G T, Feng T H, Xu Y and Miroshnichenko A E 2018 Phys. Rev. B 98 161112 [13] Huang S B, Liu T, Zhou Z, Wang X, Zhu J and Li Y 2020 Phys. Rev. Appl. 14 021001 [14] Chen G Y, Zhang W X and Zhang X D 2019 Opt. Express 27 16449 [15] Chen W J, Chen Y T and Liu W 2019 Phys. Rev. Lett. 122 153907 [16] Jin J C, Yin X F, Ni L F, Soljacic M, Zhen B and Peng C 2019 Nature 574 501 [17] Kang M, Zhang S P, Xiao M and Xu H X 2021 Phys. Rev. Lett. 126 117402 [18] Song Q J, Hu J S, Dai S W, Zheng C X, Han D Z, Zi J, Zhang Z Q and Chan C T 2020 Sci. Adv. 6 eabc1160 [19] Yuan L J and Lu Y Y 2018 Phys. Rev. A 97 043828 [20] Huang J F, Song Q J, Hu P, Xiang H and Han D Z 2021 Chin. Phys. B 30 084211 [21] Song Q J, Dai S W, Han D Z, Zhang Z Q, Chan C T and Zi J 2021 Chin. Phys. Lett. 38 084203 [22] Huang C, Song Q J, Hu P, Dai S W, Xiang H and Han D Z 2020 Chin. Phys. Lett. 37 067802 [23] Cumpsty N A and Whitehead D S 1971 J. Sound Vib. 18 353 [24] Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A and Segev M 2011 Phys. Rev. Lett. 107 183901 [25] Weimann S, Xu Y, Keil R, Miroshnichenko A E, Tunnermann A, Nolte S, Sukhorukov A A, Szameit A and Kivshar Y S 2013 Phys. Rev. Lett. 111 240403 [26] Gomis-Bresco J, Artigas D and Torner L 2017 Nat. Photon. 11 232 [27] Timofeev I V, Maksimov D N and Sadreev A F 2018 Phys. Rev. B 97 024306 [28] Mukherjee S, Gomis-Bresco J, Pujol-Closa P, Artigas D and Torner L 2019 Opt. Lett. 44 5362 [29] Pankin P, Wu B R, Yang J H, Chen K P, Timofeev I V and Sadreev A F 2020 Commun. Phys. 3 1 [30] Xu X C, Xi Y G, Han D H, Liu X H, Zi J and Zhu Z Q 2005 Appl. Phys. Lett. 86 091112 [31] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|