Special Issue:
SPECIAL TOPIC — Fabrication and manipulation of the second-generation quantum systems
|
SPECIAL TOPIC—Fabrication and manipulation of the second-generation quantum systems |
Prev
Next
|
|
|
Up-conversion detection of mid-infrared light carrying orbital angular momentum |
Zheng Ge(葛正)1,2, Chen Yang(杨琛)1,2, Yin-Hai Li(李银海)1,2, Yan Li(李岩)1,2, Shi-Kai Liu(刘世凯)1,2, Su-Jian Niu(牛素俭)1,2, Zhi-Yuan Zhou(周志远)1,2,†, and Bao-Sen Shi(史保森)1,2,‡ |
1. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2. CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract Frequency up-conversion is an effective method of mid-infrared (MIR) detection by converting long-wavelength photons to the visible domain, where efficient detectors are readily available. Here, we generate MIR light carrying orbital angular momentum (OAM) from a difference frequency generation process and perform up-conversion on it via sum frequency conversion in a bulk quasi-phase-matching crystal. The maximum quantum conversion efficiencies from MIR to visible are 34.0%, 10.4%, and 3.5% for light with topological charges of 0, 1, and 2, respectively, achieved by utilizing an optimized strong pump light. We also verify the OAM conservation with a specially designed interferometer, and the results agree well with the numerical simulations. Our study opens up the possibilities for generating, manipulating, and detecting MIR light that carries OAM, and will have great potential for optical communications and remote sensing in the MIR regime.
|
Received: 21 February 2022
Revised: 09 May 2022
Accepted manuscript online:
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
52.70.Kz
|
(Optical (ultraviolet, visible, infrared) measurements)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92065101 and 11934013) and Anhui Initiative In Quantum Information Technologies (Grant No. AHY020200). |
Corresponding Authors:
Zhi-Yuan Zhou, Bao-Sen Shi
E-mail: zyzhouphy@ustc.edu.cn;drshi@ustc.edu.cn
|
Cite this article:
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森) Up-conversion detection of mid-infrared light carrying orbital angular momentum 2022 Chin. Phys. B 31 104210
|
[1] Abedin M N, Mlynczak M G and Refaat T F 2010 Proc. SPIE 7808, Infrared Remote Sensing and Instrumentation XVIII, 78080V (27 August 2010) [2] Li J, Parchatka U, Königstedt R and Fischer H 2012 Opt. Express 20 7590 [3] Wang D, Liang S, He T and Shi Q 2015 Remote Sens. Environ. 167 31 [4] Mintenig S M, Int-Veen I, Löder M G J, Primpke S and Gerdts G 2017 Water Res. 108 365 [5] Chen Y, Zou C, Mastalerz M, Hu S, Gasaway C and Tao X 2015 Int. J. Mol. Sci. 16 30223 [6] Wang Y, Wang Y and Le H Q 2005 Opt. Express 13 6572 [7] Lux A, Müller R, Tulk M, Olivieri C, Zarrabeita R, Salonikios T and Wirnitzer B 2013 Orphanet. J. Rare Dis. 8 94 [8] Wrobel T P and Bhargava R 2018 Anal. Chem. 90 1444 [9] Nallala J, Lloyd G R, Hermes M, Shepherd N and Stone N 2017 Vib. Spectrosc. 91 83 [10] Wang L and Mizaikoff B 2008 Anal. Bioanal. Chem. 391 1641 [11] Walsh B M, Lee H R and Barnes N P 2016 J. Lumin. 169 400 [12] Soibel A, Wright M, Farr W, Keo S, Hill C, Yang R Q and Liu H C 2010 Proc. SPIE 7587, Free-Space Laser Communication Technologies XXII, 75870S (26 February 2010) [13] Bellei F, Cartwright A P, McCaughan A N, Dane A E, Najafi F, Zhao Q and Berggren K K 2016 Opt. Express 24 3248 [14] Grier D G 2003 Nature 424 810 [15] Bhebhe N, Williams P A C, Rosales-Guzmán C, Rodriguez-Fajardo V and Forbes A 2018 Sci. Rep. 8 17387 [16] Fang X, Ren H and Gu M 2020 Nat. Photonics 14 102 [17] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516 [18] Zhou Z Y, Li Y, Ding D S, Zhang W, Shi S and Shi B S 2015 Opt. Express 23 18435 [19] Chong A, Wan C, Chen J and Zhan Q 2020 Nat. Photonics 14 350 [20] Li F, Xu T, Zhang W, Qiu X, Lu X and Chen L 2018 Appl. Phys. Lett. 113 161109 [21] Liu S, Lou Y and Jing J 2020 Nat. Commun. 11 3875 [22] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185 [23] Willner A E, Ren Y, Xie G, Yan Y, Li L, Zhao Z, Wang J, Tur M, Molisch A F and Ashrafi S 2017 Phil. Trans. R. Soc. A 375 20150439 [24] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M and Willner A E 2012 Nat. Photon. 6 488 [25] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N and Ashrafi S 2015 Adv. Opt. Photon. 7 66 [26] Masuda K, Shinozaki R, Kinezuka Y, Lee J, Ohno S, Hashiyada S, Okamoto H, Sakai D, Harada K, Miyamoto K and Omatsu T 2018 Opt. Express 26 22197 [27] Omatsu T, Miyamoto K, Toyoda K, Morita R, Arita Y and Dholakia K 2019 Adv. Opt. Mater. 7 1801672 [28] Barh A, Rodrigo P J, Meng L, Pedersen C and Tidemand-Lichtenberg P 2019 Adv. Opt. Photon. 11 952 [29] Fang X, Yang G, Wei D, Wei D, Ni R, Ji W, Zhang Y, Hu X, Hu W, Lu Y Q, Zhu S N and Xiao M 2016 Opt. Lett. 41 1169 [30] Trajtenberg-Mills S, Juwiler I and Arie A 2015 Laser & Photonics Reviews 9 L40-4 [31] Chen Y, Ni R, Wu Y, Du L, Hu X, Wei D, Zhang Y and Zhu S 2020 Phys. Rev. Lett. 125 143901 [32] Neely T W, Nugent-Glandorf L, Adler F and Diddams S A 2012 Opt. Lett. 37 4332 [33] Buchter K D, Wiegand M C, Herrmann H and Sohler W 2009 CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference pp. 1—1 [34] Liu S L, Liu S K, Li Y H, Shi S, Zhou Z Y and Shi B S 2017 Opt. Express 25 24290 [35] Junaid S, Tomko J, Semtsiv M P, Kischkat J, Masselink W T, Pedersen C and Tidemand-Lichtenberg P 2018 Opt. Express 26 2203 [36] Sephton B, Vallés A, Steinlechner F, Konrad T, Torres J P, Roux F S and Forbes A 2019 Opt. Lett. 44 586 [37] Mrejen M, Erlich Y, Levanon A and Suchowski H 2020 Laser Photonics Rev. 14 2000040 [38] Yang H R, Wu H J, Gao W, Rosales-Guzmán C and Zhu Z H 2020 Opt. Lett. 45 3034 [39] Wu H J, Zhao B, Rosales-Guzman C, Gao W, Shi B S and Zhu Z H 2020 Phys. Rev. Appl. 13 064041 [40] Wu H J, Yu B S, Zhu Z H, Gao W, Ding D S, Zhou Z Y, Hu X P, Rosales-Guzmán C, Shen Y and Shi B S 2022 Optica 9 187 [41] Dam J S, Tidemand-Lichtenberg P and Pedersen C 2012 Nat. Photonics 6 788 [42] Mancinelli M, Trenti A, Piccione S, Fontana G, Dam J S, Tidemand-Lichtenberg P, Pedersen C and Pavesi L 2017 Nat. Commun. 8 15184 [43] Junaid S, Chaitanya Kumar S, Mathez M, Hermes M, Stone N, Shepherd N, Ebrahim-Zadeh M, Tidemand-Lichtenberg P and Pedersen C 2019 Optica 6 702 [44] Huang K, Wang Y, Fang J, Kang W, Sun Y, Liang Y, Hao Q, Yan M and Zeng H 2021 Photon. Res. 9 259 [45] A. S. A, O'Donnell C F, Chaitanya Kumar S, Ebrahim-Zadeh M, Tidemand-Lichtenberg P and Pedersen C 2019 Photon. Res. 7 783 [46] Boyd R W 2010 Nonlinear Optics, 3rd edn. (Singapore: Elsevier Pte Ltd.) pp. 69—74 [47] Tran-Ba-Chu and Broyer M 1985 J. Phys. France 46 523 [48] Zhou Z Y, Li Y, Ding D S, Zhang W, Shi S, Shi B S and Guo G C 2016 Light Sci. Appl. 5 e16019 [49] Agrawal G P 2000 Nonlinear Fiber Optics Nonlinear Science at the Dawn of the 21st Century, ed P L Christiansen, M P Sorensen and A C Scott (Berlin, Heidelberg: Springer) pp. 195—211 [50] Fisher R A and Bischel W K 1975 J. Appl. Phys. 46 4921 [51] Zhou Z Y, Ding D S, Jiang Y K, Li Y, Shi S, Wang X S and Shi B-S 2014 Opt. Express 22 20298 [52] Sephton B, Dudley A and Forbes A 2016 Appl. Opt. 55 7830 [53] Wei D, Cheng Y, Ni R, Zhang Y, Hu X, Zhu S and Xiao M 2019 Phys. Rev. Appl. 11 014038 [54] Liu S, Yang C, Xu Z, Liu S, Li Y, Li Y, Zhou Z, Guo G and Shi B 2020 Phys. Rev. A 101 012339 [55] Li Y, Zhou Z Y, Liu S L, Liu S K, Yang C, Xu Z H, Li Y H and Shi B S 2019 OSA Continuum 2 470 [56] Lunine J I, Macintosh B and Peale S 2009 Phys. Today 62 46 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|