Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(5): 055202    DOI: 10.1088/1674-1056/28/5/055202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Temporal and spatial evolution of air-spark switch plasmainvestigated by the Mach-Zehnder interferometer

Jie Huang(黄杰)1,2, Lin Yang(杨林)2, Hongchao Zhang(张宏超)3, Lei Chen(陈磊)2, Xianying Wu(吴先映)1
1 College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China;
3 Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  An air-spark switch plasma was diagnosed by the Mach-Zehnder laser interferometer with ultra-high spatial and temporal resolution. The interferograms containing plasma phase shift information at different time were obtained. The phase shift distributions of the plasma were extracted by numerically processing the interferograms. The three-dimensional (3D) electron density distributions of the air-spark switch plasma were then obtained. The working process of the air-spark switch was described by analyzing the temporal and spatial evolution of the plasma electron density.
Keywords:  air-spark switch      Mach-Zehnder laser interferometer      arc channel      electron density  
Received:  19 December 2018      Revised:  04 March 2019      Accepted manuscript online: 
PACS:  52.75.Kq (Plasma switches (e.g., spark gaps))  
  52.80.-s (Electric discharges)  
  07.60.Ly (Interferometers)  
Corresponding Authors:  Lin Yang     E-mail:  fuyunyufeng@163.com

Cite this article: 

Jie Huang(黄杰), Lin Yang(杨林), Hongchao Zhang(张宏超), Lei Chen(陈磊), Xianying Wu(吴先映) Temporal and spatial evolution of air-spark switch plasmainvestigated by the Mach-Zehnder interferometer 2019 Chin. Phys. B 28 055202

[1] Yalandin M I, Sharypov K A, Shpak V G, Shunailov S A and Mesyats G A 2010 IEEE Trans. Dielectr Electr. Insul. 17 34
[2] Golnabi H 2000 Rev. Sci. Instrum. 71 413
[3] Kefu L, Yaqing T, Liu X L and Jian Q 2013 IEEE Trans. Electron. Devices 60 875
[4] Cheng X B, Liu J L and Qian B L 2010 IEEE Trans. Plasma Sci. 38 516
[5] Rahaman H, Nam S H, Nam J W, Lee B J and Frank K 2010 Appl. Phys. Lett. 96 141502
[6] Lee L, Cai L, Qi X D, Lin F C and Pan Y 2012 J. Appl. Phys. 111 053306
[7] Kharlov A V 2010 IEEE Trans. Plasma Sci. 38 2474
[8] Anaraki A P, Kadkhodapour J and Taherkhani B 2014 J. Fai. L Anal. Preven. 14 784
[9] Inada Y, Matsuoka S, Kumada A, Ikeda H and Hidaka K 2012 Phys. D: Appl. Phys. 45 435202
[10] Jiao Z H, Wang G L, Zhou X X, Wu C H, Zuo Y L, Zeng X M, Zhou K N and Su J Q 2016 Plasma Sci. Technol. 18 1169
[11] Harilal S S, Brumfield B E and Phillips M C 2015 Phys. Plasmas 22 063301
[12] Grun J, Stamper J, Manka C, Resnick J, Burris R, Crawford J and Ripin B H 1991 Phys. Rev. Lett. 66 2738
[13] Zhang H C, Lu J and Ni X W 2009 Opt. Commun. 282 1720
[14] Zhang H C, Lu J and Ni X W 2009 J. Appl. Phys. 106 063308
[15] Harilal S S, Miloshevsky G V, Diwakar P K, LaHaye N L and Hassanein A 2012 Phys. Plasmas 19 083504
[16] Yang Z F, Wu J and Wei W F 2016 Phys. Plasmas 23 083523
[17] Weber B V and Fulghum S F 1997 Rev. Sci. I Nstrum 68 1227
[18] Breitling D, Schittenhelm H, Berger P, Dausinger F and Hügel H 1999 Appl. Phys. A: Mater. Sci. Process 69 S505
[19] Alexander B, Burkhard J and Sergey P 2005 IEEE Trans. Plasma Sci. 5 1465
[20] Ivanov V V and Anderson A A 2016 Appl. Opt. 55 498
[21] Magesh T and John S 2008 J. Appl. Phys. 104 013303
[22] Takeda M, Ina H and Kobayashi S 1982 J. Opt. Soc. Am. 72 156
[23] Álvarez R, Rodero A and Quintero M C 2002 Spectrochim. Acta Part. B At. Spectrosc. 57 1665
[24] Lu Y H, Wu J, Shi H T, Zhang D Y, Li X W, Jia S L and Qiu A C 2018 Phys. Plasmas 25 072709
[1] Photoreflectance system based on vacuum ultraviolet laser at 177.3 nm
Wei-Xia Luo(罗伟霞), Xue-Lu Liu(刘雪璐), Xiang-Dong Luo(罗向东), Feng Yang(杨峰), Shen-Jin Zhang(张申金), Qin-Jun Peng(彭钦军), Zu-Yan Xu(许祖彦), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2022, 31(11): 110701.
[2] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[3] Electron density distribution of LiMn2O4 cathode investigated by synchrotron powder x-ray diffraction
Tongtong Shang(尚彤彤), Dongdong Xiao(肖东东), Qinghua Zhang(张庆华), Xuefeng Wang(王雪锋), Dong Su(苏东), and Lin Gu(谷林). Chin. Phys. B, 2021, 30(7): 078202.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[6] Variation of electron density in spectral broadening process in solid thin plates at 400 nm
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义). Chin. Phys. B, 2021, 30(10): 104205.
[7] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[8] Study of magnetic and optical properties of Zn1-xTMxTe (TM=Mn, Fe, Co, Ni) diluted magnetic semiconductors: First principle approach
Q Mahmood, M Hassan, M A Faridi. Chin. Phys. B, 2017, 26(2): 027503.
[9] Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(5): 053102.
[10] First-principles calculations of structural and electronic properties of TlxGa1-xAs alloys
G. Bilgeç Akyüz, A. Y. Tunali, S. E. Gulebaglan, N. B. Yurdasan. Chin. Phys. B, 2016, 25(2): 027101.
[11] Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations
Yuan Ye (袁野), Xu Run (徐闰), Xu Hai-Tao (徐海涛), Hong Feng (洪峰), Xu Fei (徐飞), Wang Lin-Jun (王林军). Chin. Phys. B, 2015, 24(11): 116302.
[12] Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon
Xu Dong-Sheng (徐东升), Zou Shuai (邹帅), Xin Yu (辛煜), Su Xiao-Dong (苏晓东), Wang Xu-Sheng (王栩生). Chin. Phys. B, 2014, 23(6): 065201.
[13] First-principles study of orbital ordering in cubic fluoride KCrF3
Ming Xing (明星), Xiong Liang-Bin (熊良斌), Xu Huo-Xi (徐火希), Du Fei (杜菲), Wang Chun-Zhong (王春忠), Chen Gang (陈岗). Chin. Phys. B, 2014, 23(3): 037401.
[14] Charge density at the nucleus and radial behavior of ground state for lithium-like ions with Z = 21 to 30
Yu Wei-Wei(于伟威), Wang Zhi-Wen(王治文), Chen Chao(陈超), Cai Juan(蔡娟), and Zhang Nan(张楠) . Chin. Phys. B, 2012, 21(7): 073102.
[15] Methyl orbital signatures in 2-amino-1-propanol
Wang Ke-Dong(王克栋), Duan Kun-Jie(段坤杰), and Liu Yu-Fang (刘玉芳) . Chin. Phys. B, 2012, 21(7): 073103.
No Suggested Reading articles found!