Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 013202    DOI: 10.1088/1674-1056/27/1/013202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation

Da-Long Qi(齐大龙)1, Ye Zheng(郑烨)1, Wen-Jing Cheng(程文静)2, Yun-Hua Yao(姚云华)1, Lian-Zhong Deng(邓联忠)1, Dong-Hai Feng(冯东海)1, Tian-Qing Jia(贾天卿)1, Zhen-Rong Sun(孙真荣)1, Shi-An Zhang(张诗按)1,3
1 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China;
2 School of Electronic & Electrical Engineering, Shangqiu Normal University, Shangqiu 476000, China;
3 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  Improving the up-conversion luminescence efficiency of rare-earth ions via the multi-photon absorption process is crucial in several related application areas. In this work, we theoretically propose a feasible scheme to enhance the resonance-mediated two-photon absorption in Er3+ ions by shaping the femtosecond laser field with a rectangle phase modulation. Our theoretical results show that the resonance-mediated two-photon absorption can be decomposed into the on-resonant and near-resonant parts, and the on-resonant part mainly comes from the contribution of laser central frequency components, while the near-resonant part mainly results from the excitation of low and high laser frequency components. So, the rectangle phase modulation can induce a constructive interference between the two parts by properly designing the modulation depth and width, and finally realizes the resonance-mediated two-photon absorption enhancement. Moreover, our results also show that the enhancement efficiency of resonance-mediated two-photon absorption depends on the laser pulse width (or laser spectral bandwidth), final state transition frequency, and intermediate and final state absorption bandwidths. The enhancement efficiency modulation can be attributed to the relative weight manipulation of on-resonant and near-resonant two-photon absorption in the whole excitation process. This study presents a clear physical insight for the quantum control of resonance-mediated two-photon absorption in the rare-earth ions, and there will be an important significance for improving the up-conversion luminescence efficiency of rare-earth ions.
Keywords:  coherent quantum control      femtosecond pulse shaping      two-photon absorption      rare-earth ions  
Received:  30 September 2017      Revised:  13 October 2017      Accepted manuscript online: 
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.80.Wr (Other multiphoton processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474096), the Science and Technology Commission of Shanghai Municipality, China (Grant Nos. 14JC1401500, 17ZR146900, and 16520721200), and the Higher Education Key Program of He'nan Province of China (Grant No. 17A140025).
Corresponding Authors:  Wen-Jing Cheng, Shi-An Zhang     E-mail:  0110wenjing@163.com;sazhang@phy.ecnu.edu.cn

Cite this article: 

Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按) Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation 2018 Chin. Phys. B 27 013202

[1] Auzel F 2004 Chem. Rev. 104 139
[2] Wang F and Liu X 2009 Chem. Soc. Rev. 38 976
[3] Scheps R 1996 Prog. Quant. Electron. 20 271
[4] Wintner E, Sorokin E and Sorokina I T 2001 Laser Phys. 11 1193
[5] Tessler N, Medvedev V, Kazes M, Kan S H and Banin U 2002 Science 295 1506
[6] Zhou P, Wang X, Ma Y, Lu H and Liu Z 2012 Laser Phys. 22 1744
[7] Downing E, Hesselink L, Ralston J and Macfarlane R 1996 Science 273 1185
[8] Li Y, Zhang J, Luo Y, Zhang X and Hao Z 2011 J. Mater. Chem. 21 2895
[9] Nyk M, Kumar R, Ohulchansky T Y, Bergey E J and Prasad P N 2008 Nano Lett. 8 3834
[10] Wang F, Tan W B, Zhang Y, Fan X and Wang M 2005 Nanotechnology 17 R1
[11] Yu M, Li F, Chen Z, Hu H, Zhan C, Yang H and Huang C 2009 Anal. Chem. 81 930
[12] Vetrone F, Naccache R, Zamarron A, Juarranz de la Fuente A, Sanz-Rodríguez F, Maestro L M, Rodriguez E M, Jaque D, Sole J G and Capobianco J A 2010 ACS Nano 4 3254
[13] Wang F and Liu X 2008 J. Am. Chem. Soc. 130 5642
[14] Teng X, Zhu Y, Wei W, Wang S, Huang J, Naccache R, Hu W, Iing A, Tok Y, Han Y, Zhang Q, Fan Q, Huang W, Capobianco J A and Huang L 2012 J. Am. Chem. Soc. 134 8340
[15] Yuan D, Tan M C, Riman R E and Chow G M 2013 J. Phys. Chem. C 117 13297
[16] Yuan D, Yi G S and Chow G M 2009 J. Mater. Res. 24 2042
[17] Tian X, Wu Z, Jia Y, Chen J, Zheng R K, Zhang Y and Luo H 2013 Appl. Phys. Lett. 102 42907
[18] Tikhomirov V K, Chibotaru L F, Saurel D, Gredin P, Mortier M and Moshchalkov V V 2009 Nano Lett. 9 721
[19] Brites C D S, Lima P P, Silva N J O, Millán A, Amaral V S, Palacio F and Carlos L D 2010 Adv. Mater. 22 4499
[20] Zhou J, Deng J, Zhu H, Chen X, Teng Y, Jia H, Xu S and Qiu J 2013 J. Mater. Chem. C 1 8023
[21] Deng R, Qin F, Chen R, Huang W, Hong M and Liu X 2015 Nat. Nanotechnol. 10 237
[22] Gainer C F, Joshua G S, De Silva C R and Romanowski M 2011 J. Mater. Chem. 21 18530
[23] Zhang S, Yao Y, Xu S, Liu P, Ding J, Jia T, Qiu J and Sun Z 2015 Sci. Rep. 5 13337
[24] Zhang S, Xu S, Ding J, Lu C, Jia T, Qiu J and Sun Z 2014 Appl. Phys. Lett. 104 014101
[25] Yao Y, Zhang S, Zhang H, Ding J, Jia T, Qiu J and Sun Z 2014 Sci. Rep. 4 07295
[26] Dudovich N, Dayan B, Faeder S M G and Silberberg Y 2001 Phys. Rev. Lett. 86 47
[27] Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287
[28] Lozovoy V V, Pastirk I, Walowicz K A and Dantus M 2003 J. Chem. Phys. 118 3187
[29] Gandman A, Chuntonov L, Rybak L and Amitay Z 2007 Phys. Rev. A 75 031401
[30] Gandman A, Chuntonov L, Rybak L and Amitay Z 2007 Phys. Rev. A 76 053419
[31] Hull R, Parisi J, Osgood Jr. R M, Warlimont H, Liu G and Jacquier B 2005 Spectroscopic Properties of Rare Earths in Optical Materials (Berlin: Springer) pp. 1-94
[32] Garnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443
[33] Nadort A, Zhao J and Goldys E M 2016 Nanoscale 5 44
[1] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[2] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[3] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[4] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[5] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
[6] Ultrafast carrier dynamics of Cu2O thin film induced by two-photon excitation
Jian Liu(刘建), Jing Li(李敬), Kai-Jun Mu(牧凯军), Xin-Wei Shi(史新伟), Jun-Qiao Wang(王俊俏), Miao Mao(毛淼), Shu Chen(陈述), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(11): 114205.
[7] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[8] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
[9] High-power ultraviolet 278-nm laser from fourth-harmonic generation of an Nd: YAG amplifier in CsB3O5 crystal
Miao He(何苗), Feng Yang(杨峰), Cheng Dong(董程), Zhi-Chao Wang(王志超), Lei Yuan(袁磊), Yi-Ting Xu(徐一汀), Guo-Chun Zhang(张国春), Zhi-Min Wang(王志敏), Yong Bo(薄勇), Qin-Jun Peng(彭钦军), Da-Fu Cui(崔大复), Yi-Cheng Wu(吴以成), Zu-Yan Xu(许祖彦). Chin. Phys. B, 2018, 27(5): 054211.
[10] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[11] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[12] Optical power limiting of ultrashort hyper-Gaussian pulses in cascade three-level system
Ji-Cai Liu(刘纪彩), Fen-Fen Guo(郭芬芬), Ya-Nan Zhao(赵亚男), Xing-Zhe Li(李兴哲). Chin. Phys. B, 2018, 27(10): 104209.
[13] Isomerism and coordination mode effects on two-photon absorption of tris(picolyl)amine-based fluorescent probes for zinc ions
Ke Zhao(赵珂), Jun Song(宋军), Mei-Yu Zhu(朱美玉), Han Zhang(张瀚), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(10): 103301.
[14] Responsive mechanism of three novel hypochlorous acid fluorescent probes and solvent effect on their sensing performance
Yong Zhou(周勇), Yun-Kun Wang(王云坤), Xiao-Fei Wang(王晓菲), Yu-Jin Zhang(张玉瑾), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(8): 083102.
[15] Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3+: GdTaO4
Qingli Zhang(张庆礼), Guihua Sun(孙贵花), Kaijie Ning(宁凯杰), Chaoshu Shi(施朝淑), Wenpeng Liu(刘文鹏), Dunlu Sun(孙敦陆), Shaotang Yin(殷绍唐). Chin. Phys. B, 2016, 25(11): 117802.
No Suggested Reading articles found!