Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 063201    DOI: 10.1088/1674-1056/ac5398
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation

Wenjing Cheng(程文静)1,†, Yuan Li(李媛)1, Hongzhen Qiao(乔红贞)1, Meng Wang(王蒙)1, Shaoshuo Ma(马绍朔)1, Fangjie Shu(舒方杰)1, Chuanqi Xie(解传奇)2, and Guo Liang(梁果)1,3
1 Henan Province Engineering Research Center of Microcavity and Photoelectric Intelligent Sensing, School of Electronics and Electrical Engineering, Shangqiu Normal University, Shangqiu 476000, China;
2 Department of Ophthalmology, First People's Hospital of Shangqiu, Shangqiu 476000, China;
3 The Key Laboratory of Weak Light Nonlinear Photonics Nankai University of Ministry of Education, Tianjin 300457, China
Abstract  Enhancing the upconversion luminescence of rare earth ions is crucial for their applications in the laser sources, fiber optic communications, color displays, biolabeling, and biomedical sensors. In this paper, we theoretically study the resonance-mediated (1+2)-three-photon absorption in Pr3+ ions by a rectangle phase modulation. The results show that the resonance-mediated (1+2)-three-photon absorption can be effectively enhanced by properly designing the depth and width of the rectangle phase modulation, which can be attributed to the constructive interference between on-resonant and near-resonant three-photon excitation pathways. Further, the enhancement efficiency of resonance-mediated (1+2)-three-photon absorption can be affected by the pulse width (or spectral bandwidth) of femtosecond laser field, final state transition frequency, and absorption bandwidths. This research can provide a clear physical picture for understanding and controlling the multi-photon absorption in rare-earth ions, and also can provide theoretical guidance for improving the up-conversion luminescence.
Keywords:  coherent quantum control      femtosecond pulse shaping      three-photon absorption      rare-earth ions  
Received:  12 November 2021      Revised:  21 January 2022      Accepted manuscript online:  10 February 2022
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.80.Wr (Other multiphoton processes)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12004238 and 11764036), the Natural Science Foundation of Henan Province, China (Grant No. 222102230068), and the Open Subject of the Key Laboratory of Weak Light Nonlinear Photonics of Nankai University (Grant No. OS 21-3).
Corresponding Authors:  Wenjing Cheng     E-mail:  0110wenjing@163.com

Cite this article: 

Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果) Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation 2022 Chin. Phys. B 31 063201

[1] Nilsson J, Clarkson W A, Selvas R, Sahu J K, Turner P W, Alam S U and Grudinin A B 2004 Opt. Fiber. Technol. 10 5
[2] Tessler N, Medvedev V, Kazes M, Kan S and Banin U 2002 Science 295 1506
[3] Li Y, Zhang J, Luo Y, Zhang X and Hao Z 2011 J. Mater. Chem. 21 2895
[4] Nyk M, Kumar R, Ohulchanskyy T Y, Bergey E J and Prasad P N 2008 Nano. Lett. 8 3834
[5] Gai S, Li C, Yang P and Lin J 2014 Chem. Rev. 114 2343
[6] Chen H, Xia K, Liu Z, Wang X, Zhang X, Xu Y and Dai S 2019 Chin. Phys. B 28 024209
[7] Simons D R, Faber A J and Waal H 1995 J. Non-Cryst. Solids. 185 283
[8] Nikl M, Ren G, Ding D, Mihokova E, Jary V and Feng H 2010 Chem. Phys. Lett. 493 72
[9] Pidol L, Viena B, Kahn-Harari A, Bessiere A and Dorenbos P 2005 Nucl. Instrum. Methods Phys. Res. 537 125
[10] Birkhahn R, Garter M and Steckl A 1999 Appl. Phys. Lett. 74 2161
[11] Okamoto S, Kobayashi H and Yamamoto H 1999 J. Appl. Phys. 86 5594
[12] Kaminskii A A 1990 Laser Crystals, 2nd edn., (Berlin: Springer-Verlag)
[13] Han X, Wu J, Hu C, Yang Q, Xin C, Wang S and Ye Z 2021 Inorg. Chem. 60 14978
[14] Cates E, Wilkinson A and Kim J 2012 J. Phys. Chem. C 116 12772
[15] Zhang S, Liang H and Liu C 2013 J. Phys. Chem. C 117 2216
[16] Tian X, Wu Z, Jia Y, Chen J, Zheng R K, Zhang Y and Luo H 2013 Appl. Phys. Lett. 102 42907
[17] Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287
[18] Dudovich N, Dayan B, Faeder S M G and Silberberg Y 2001 Phys. Rev. Lett. 86 47
[19] Lozovoy V V, Pastirk I, Walowicz K A and Dantus M 2003 J. Chem. Phys. 118 3187
[20] Pastirk I, Dela Cruz J M, Walowicz K A, Lozovoy V V and Dantus M 2003 Opt. Express 11 1695
[21] Walowicz K A, Pastirk I, Lozovoy V V and Dantus M 2002 J. Phys. Chem. A 106 9369
[22] Gandman A, Chuntonov L, Rybak L and Amitay Z 2007 Phys. Rev. A 75 031401
[23] Zhang S, Zhang H, Lu C, Jia T, Wang Z and Sun Z 2010 J. Chem. Phys. 133 214504
[24] Weiner A M 2000 Rev. Sci. Instrum. 71 1929
[25] Liu P, Cheng W, Yao Y, Xu C, Zheng Y, Deng L, Jia T, Qiu J, Sun Z and Zhang S 2017 Laser. Phys. Lett. 14 115301
[26] Zhang S, Xu S, Ding J, Lu C, Jia T, Qiu J and Zhang S 2014 Appl. Phys. Lett. 104 014101
[27] Zhang S, Yao Y, Xu S, Liu P, Ding J, Jia T, Qiu J and Sun Z 2015 Sci. Rep. 5 13337
[28] Hull R, Parisi J, Osgood J, Warlimont H, Liu G and Jacquier B 2005 Spectroscopic Properties of Rare Earths in Optical Materials (Berlin: Springer) pp. 1-94
[29] Garnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443
[30] Nadort A, Zhao J and Goldys E 2016 Nanoscale 8 13099
[31] Qin X, Liu X, Huang W, Bettinelli M and Liu X 2017 Chem. Rev. 117 4488
[32] Cheng W, Jia T, Shang X, Zhang S, Ma J, Feng D, Sun Z, and Qiu J 2014 Phys. Rev. A 89 023401
[33] Zheng Y, Cheng W, Yao Y, Xu C, Feng D, Jia T, Qiu J, Sun Z and Zhang S 2017 RSC. Adv. 7 13444
[1] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[2] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[3] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[4] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[5] Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3+: GdTaO4
Qingli Zhang(张庆礼), Guihua Sun(孙贵花), Kaijie Ning(宁凯杰), Chaoshu Shi(施朝淑), Wenpeng Liu(刘文鹏), Dunlu Sun(孙敦陆), Shaotang Yin(殷绍唐). Chin. Phys. B, 2016, 25(11): 117802.
[6] The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol–gel SiO2 films
Zhang Xiao-Wei(张晓伟), Lin Tao(林涛), Xu Jun(徐骏), Xu Ling(徐岭), and Chen Kun-Ji(陈坤基) . Chin. Phys. B, 2012, 21(1): 018101.
[7] The study of numerical character for femtosecond pulse shaping
Zou Hua(邹华), Zhu Wei-Hua(朱卫华), and Wang Guo-Dong(王国栋). Chin. Phys. B, 2007, 16(11): 3429-3433.
[8] Thiophene-fluorene derivatives with high three-photon absorption activities and their application to optical power limiting
Ma Wen-Bo (马文波), Wu Yi-Qun (吴谊群), Han Jun-He (韩俊鹤), Liu Jun-Hui (刘军辉), Gu Dong-Hong (顾冬红), Gan Fu-Xi (干福熹). Chin. Phys. B, 2006, 15(4): 750-755.
No Suggested Reading articles found!