ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Variation of electron density in spectral broadening process in solid thin plates at 400 nm |
Si-Yuan Xu(许思源)1,2, Yi-Tan Gao(高亦谈)2,3, Xiao-Xian Zhu(朱孝先)2,3, Kun Zhao(赵昆)2,4,†, Jiang-Feng Zhu(朱江峰)1,‡, and Zhi-Yi Wei(魏志义)2,3,4 |
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China; 4 Songshan Lake Material Laboratory, Dongguan 523808, China |
|
|
Abstract The generation of continuous spectrum centered at 400 nm from solid thin plates is demonstrated in this work. A continuum covering 365 nm to 445 nm is obtained when 125-μJ frequency-doubled Ti:sapphire laser pulses are applied to six thin fused silica plates at 1-kHz repetition rate. The generalized nonlinear Schrödinger equation simplified for forward propagation is solved numerically, the spectral broadening with the experimental parameters is simulated, and good agreement between simulated result and experimental measurement is achieved. The variation of electron density in the thin plate and the advantage of a low electron density in the spectral broadening process are discussed.
|
Received: 27 January 2021
Revised: 04 March 2021
Accepted manuscript online: 23 March 2021
|
PACS:
|
42.65.Jx
|
(Beam trapping, self-focusing and defocusing; self-phase modulation)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.65.Ky
|
(Frequency conversion; harmonic generation, including higher-order harmonic generation)
|
|
42.65.Hw
|
(Phase conjugation; photorefractive and Kerr effects)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405202), the Major Program of the National Natural Science Foundation of China (Grant No. 61690221), and the General Program of the National Natural Science Foundation of China (Grant No. 11774277). |
Corresponding Authors:
Kun Zhao, Jiang-Feng Zhu
E-mail: zhaokun@iphy.ac.cn;jfzhu@xidian.edu.cn
|
Cite this article:
Si-Yuan Xu(许思源), Yi-Tan Gao(高亦谈), Xiao-Xian Zhu(朱孝先), Kun Zhao(赵昆), Jiang-Feng Zhu(朱江峰), and Zhi-Yi Wei(魏志义) Variation of electron density in spectral broadening process in solid thin plates at 400 nm 2021 Chin. Phys. B 30 104205
|
[1] Musheghyan M, Lucking F, Cheng Z, Frei H and Assion A 2019 Opt. Lett. 44 1464 [2] Nisoli M, De Silvestri S and Svelto O 1996 Appl. Phys. Lett. 68 2793 [3] Thomas B and Krausz F 2000 Rev. Mod. Phys 72 545 [4] He P, Liu Y Y, Zhao K, Teng H, He X K, Huang P, Huang H D, Zhong S Y, Jiang Y J, Fang S B, Hou X and Wei Z Y 2017 Opt. Lett. 42 474 [5] Lu C H, Tsou Y J, Chen H Y, Chen B H, Cheng Y C, Yang S D, Chen M C, Hsu C C and Kung A H 2014 Optica 1 400 [6] Alfano R R and Shapiro S L 1970 Phys. Rev. Lett. 24 592 [7] Rothenberg J E 1992 Opt. Lett. 17 1340 [8] Hauri C P, Kornelis W, Helbing F W, Heinrich A, Couairon A, Mysyrowicz A, Biegert J and Keller U 2004 Appl. Phys. B 79 673 [9] Hentschel M, Kienberger R, Spielmann C, Reider G A, Milosevic N, Brabec T, Corkum P, Heinzmann U, Drescher M and Krausz F 2001 Nature 414 509 [10] Li J, Ren X, Yin Y, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S, Wu Y, Chini M and Chang Z 2017 Nat. Commun. 8 186 [11] Sansone G, Kelkensberg F, Perez-Torres J F, Morales F, Kling M F, Siu W, Ghafur O, Johnsson P, Swoboda M, Benedetti E, Ferrari F, Lepine F, Sanz-Vicario J L, Zherebtsov S, Znakovskaya I, L'huillier A, Ivanov M Y, Nisoli M, Martin F and Vrakking M J 2010 Nature 465 763 [12] Lewenstein M, Balcou P, Ivanov M Y, L'huillier A and Corkum P B 1994 Phys. Rev. A 49 2117 [13] Liu Y Y, Zhao K, He P, Huang H D, Teng H and Wei Z Y 2017 Chin. Phys. Lett. 34 074204 [14] Canhota M, Weigand R and Crespo H M 2019 Opt. Lett. 44 1015 [15] Bergé L, Skupin S, Nuter R, Kasparian J and Wolf J P 2007 Rep. Prog. Phys. 70 1633 [16] Sudrie L, Couairon A, Franco M, Lamouroux B, Prade B, Tzortzakis S and Mysyrowicz A 2002 Phys. Rev. Lett. 89 186601 [17] Cheng Y C, Lu C H, Lin Y Y and Kung A H 2016 Opt. Express 24 7224 [18] Aközbeka N, Scaloraa M, Bowdena C M and Chinb S L 2001 Opt. Commun. 191 353 [19] Adair R, Chase L L and Payne S A 1989 Phys. Rev. B 39 3337 [20] Trebino R, Delong K W, Fittinghoff D N, Sweetser J N, Krumbügel M A, Richman B A and Kane D J 1997 Rev. Sci. Instrum. 68 3277 [21] Huang H D, Teng H, Zhan M J, Xu S Y, Huang P, Zhu J F and Wei Z Y 2019 Acta Phys. Sin. 68 070602 (in Chinese) [22] Liu W, Li C, Zhang Z, Kartner F X and Chang G 2016 Opt. Express 24 15328 [23] Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y and Nubbemeyer T 2018 Opt. Lett. 43 5877 [24] Fibich G and Gaeta A L 2000 Opt. Lett. 25 335 [25] Berge L, Skupin S and Steinmeyer G 2008 Phys. Rev. Lett. 101 213901 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|