Analytical model for Rayleigh—Taylor instability in conical target conduction region
Zhong-Yuan Zhu(朱仲源)1, Yun-Xing Liu(刘云星)2, Ying-Jun Li(李英骏)1,2,†, and Jie Zhang(张杰)3
1. School of Science, China University of Mining and Technology, Beijing 100083, China; 2. Double-cone Ignition (DCI) Joint Team, State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Beijing 100083, China; 3. Double-cone Ignition(DCI) Joint Team, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract This work builds an isobaric steady-state fluid analytical-physical model of the plasma conduction region in a conical target. The hydrodynamic instability in the double-cone ignition scheme[21] for inertial confinement fusion (ICF) proposed by Zhang is studied with the built model. With this idealized model, the relevant parameters, such as density, temperature, and length of the plasma in the conduction region of the conical target under long-pulse conditions are given. The solution of the proposed analytical model dovetails with the trend of the numerical simulation. The model and results in this paper are beneficial for discussing how to attenuate Rayleigh—Taylor instability in ICF processes with conical and spherical targets.
Fund: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos. XDA 25051000 and XDA 25010100).
Corresponding Authors:
Ying-Jun Li
E-mail: lyj@aphy.iphy.ac.cn
Cite this article:
Zhong-Yuan Zhu(朱仲源), Yun-Xing Liu(刘云星), Ying-Jun Li(李英骏), and Jie Zhang(张杰) Analytical model for Rayleigh—Taylor instability in conical target conduction region 2022 Chin. Phys. B 31 105202
[1] Betti R and Hurricane O A 2016 Nat. Phys.12 435 [2] Frenje J A 2020 Plasma Phys. Control. Fusion62 023001 [3] Zhang S and Hu S X 2020 Phys. Rev. Lett.125 105001 [4] Betti R, Goncharov V N, McCrory R L and Verdon C P 1998 Phys. Plasmas5 1446 [5] Henderson D B, McCrory R L and Morse R L 1974 Phys. Rev. Lett.33 205 [6] Yang H, Zhang J and Li Y 2002 Phys. Rev. E66 016406 [7] ColaÏtis A, Duchateau G and Ribeyre X 2015 Phys. Rev. E92 041101 [8] Hill D W and Kingham R J 2018 Phys. Rev. E98 021201 [9] Clark T R and Milchberg H M 1998 Phys. Rev. E57 3417 [10] Duchateau G, Hu S X and Pineau A 2019 Phys. Rev. E100 033201 [11] Lindl J D, Amendt P and Berger R L 2004 Phys. Plasmas11 339 [12] Lindl J 1995 Phys. Plasmas2 3933 [13] Perkins L J, Betti R and LaFortune K N 2009 Phys. Rev. Lett.103 045004 [14] Marozas J A, Hohenberger M and Rosenberg M J 2018 Phys. Rev. Lett.120 085001 [15] Livescu D, Wei T and Petersen M R 2011 J. Phys.: Conf. Ser.318 082007 [16] Livescu D, Ristorcelli J R and Gore R A 2010 Phys. Scr.T142 014015 [17] Livescu D 2004 Phys. Fluids16 118 [18] Yu X J, Ye W H and Wu J F 2006 High Power Laser Particle Beams08 1297 [19] Gupta N K and Lawand S V 1986 Plasma Phys. Control. Fusion28 925 [20] Sanz J 1996 Phys. Rev. E53 4026 [21] Zhang J, Wang W M and Yang X H 2020 Phil. Trans. R. Soc. A378 20200015 [22] Sanz J, Masse L and Clavin P 2006 Phys. Plasmas13 102702 [23] Guo H Y, Cheng T, Li J and Li Y J 2022 Chin. Phys. B31 35203 [24] Fang K, Zhang Z and Li Y T 2022 Acta Phys. Sin.71 035204 (in Chinese) [25] De Groot J S, Estabrook K G, Kruer W L, Drake R P, Mizuno K, and Cameron S M 1992 Physics of Fluids B: Plasma Physics4 701 [26] Li Y J, Zhang G P and Zhang J 1999 Chinese Journal of Computational Physics05 529 [27] Zeng X C, Jiang R H and Chang T Q 1991 High Power Laser and Particle Beams04 477 [28] Zhang J, Pei W B, Gu P J and Chang T Q 1995 Acta Phys. Sin.44 1936 (in Chinese) [29] Christopherson A R, Betti R and Lindl J D 2019 Phys. Rev. E99 021201 [30] Ye W H, Zhang W Y and He X T 2000 Acta Phys. Sin.49 0762 (in Chinese) [31] Li J and Zhao 2010 Plasma Phys. Control. Fusion52 045013 [32] Grun J, Decoste R, Ripin B H, et al. 1998 Appl. Phys. Lett.39 545 [33] Zhang J, Zhang Z and Wang W M (CN Patent) 111681783 A [2020-09-18] [34] Betti R, Goncharov V N and McCrory R L 1981 Phys. Plasmas5 1446 [35] Kilkenny J D, Glendinning S G and Haan S W 1994 Phys. Plasmas1 1379 [36] Tabak M, Munro D H and Lindl J D 1990 Phys. Plasmas2 1007 [37] London R A and Rosen M D 1986 Phys. Fluids29 3813 [38] Sanz J, Garnier J and Cherfils C 2005 Phys. Plasmas12 112702 [39] Yabe T, Mima K and Yoshikawa K 1981 Nucl. Fusion21 803 [40] Chang T Q 1991 Laser Plasma Interaction and Laser Fusion (Hunan: Hunan Science and Technology Press) p. 185 [41] Lobok M G, Andriyash I A and Vais O E 2021 Phys. Rev. E104 L053201 [42] De Groot J S, Cameron S M and Mizuno K 1991 Phys. Plasmas3 1241 [43] Fabbro R, Max C and Fabre E 1985 Phys. Fluids28 1463 [44] Colombant D and Tonon G F 1973 J. Appl. Phys.44 3524 [45] Bobin J L, Colombant D and Tonon G 1972 Nucl. Fusion12 445 [46] Li Y J and Zhang J 2001 Phys. Rev. E63 036410 [47] Li Y J, Lu X and Zhang J 2002 Phys. Rev. E66 046501 [48] Li Z Y, Wang L F, Wu J F and Ye W H 2020 Chin. Phys. B29 034704 [49] Spitzer L and Harm R 1952 Phys. Rev.89 977 [50] Ye W H, Zhang W Y and He X T 2002 Phys. Rev. E65 057401 [51] Ye W H, Wang L F and He X T 2010 Phys. Plasmas17 122704
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.