CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs |
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥)†, and Yonghe Chen(陈永和)‡ |
Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology(GUET), Guilin 541004, China |
|
|
Abstract Ferroelectric (FE) HfZrO/Al$_{2}$O$_{3}$ gate stack AlGaN/GaN metal-FE-semiconductor heterostructure high-electron mobility transistors (MFSHEMTs) with varying Al$_{x}$Ga$_{1-x}$N barrier thickness and Al composition are investigated and compared by TCAD simulation with non-FE HfO$_{2}$/Al$_{2}$O$_{3}$ gate stack metal-insulator-semiconductor heterostructure high-electron mobility transistors (MISHEMTs). Results show that the decrease of the two-dimensional electron gas (2DEG) density with decreasing AlGaN barrier thickness is more effectively suppressed in MFSHEMTs than that in MISHEMTs due to the enhanced FE polarization switching efficiency. The electrical characteristics of MFSHEMTs, including transconductance, subthreshold swing, and on-state current, effectively improve with decreasing AlGaN thickness in MFSHEMTs. High Al composition in AlGaN barrier layers that are under 3-nm thickness plays a great role in enhancing the 2DEG density and FE polarization in MFSHEMTs, improving the transconductance and the on-state current. The subthreshold swing and threshold voltage can be reduced by decreasing the AlGaN thickness and Al composition in MFSHEMTs, affording favorable conditions for further enhancing the device.
|
Received: 06 April 2022
Revised: 02 June 2022
Accepted manuscript online: 22 June 2022
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
77.90.+k
|
(Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)
|
|
Fund: Project supported by Guangxi Science and Technology Planning Project (Grant Nos. AD19245066, AA19254015, AD21220150, and AD18281037), the National Nature Science Foundation of China (Grant Nos. 61874036, 62174041, and 62041403), China Postdoctoral Science Foundation (Grant No. 2020M683626XB), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Grant No. 2018GXNSFAA138025), Guangxi Innovation Research Team Project (Grant No. 2018GXNSFGA281004), GUET Excellent Graduate Thesis (Grant No. YXYJRX01), and the Fund from the State Key Laboratory of ASIC & System (Grant No. KVH1233021). |
Corresponding Authors:
Haiou Li, Yonghe Chen
E-mail: lihaiou@guet.edu.cn;yhchen@guet.edu.cn
|
Cite this article:
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥)†, and Yonghe Chen(陈永和)‡ Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs 2022 Chin. Phys. B 31 097307
|
[1] Fletcher A S A and Nirmal D 2017 Superlattices Microstruct. 109 519 [2] Rawat A, Surana V K, Meer M, Bhardwaj N, Ganguly S and Saha D 2019 IEEE Trans. Electron Dev. 66 2557 [3] Sandeep V and Pravin J C 2021 Superlattices Microstruct. 156 106954 [4] Reddy B P K, Teja K B R and Kandpal K 2018 Semiconductors 52 420 [5] Chung J W, Roberts J C, Piner E L and Palacios T 2008 IEEE Electron Dev. Lett. 29 1196 [6] Yue Y, Hao Y, Feng Q, Zhang J, Ma X and Ni J 2008 Sci. China, Ser. E 52 2762 [7] Meng D, Lin S, Wen C P, Wang M, Wang J, Hao Y, Zhang Y, Lau K M and Wu W 2013 IEEE Electron Dev. Lett. 34 738 [8] Sharma A and Roy K 2017 IEEE Electron Dev. Lett. 38 1165 [9] Vasić R, Consiglio S, Clark R D, Tapily K, Sallis S, Chen B, Newby D, Medikonda M, Raja Muthinti G, Bersch E, Jordan-Sweet J, Lavoie C, Leusink G J and Diebold A C 2013 J. Appl. Phys. 113 234101 [10] Saeidi A, Jazaeri F, Stolichnov I and Ionescu A M 2016 IEEE Trans. Electron Dev. 63 4678 [11] Cheng T D, Zhou N J and Li P 2015 J. Mater. Sci. Mater. Electron. 26 7104 [12] Zhu J, Chen L, Jiang J, Lu X, Yang L, Hou B, Liao M, Zhou Y, Ma X and Hao Y 2018 IEEE Electron Dev. Lett. 39 79 [13] Gruverman A, Cao W, Bhaskar S and Dey S K 2004 Appl. Phys. Lett. 84 5153 [14] Senthil Kumar M, Sumathi R R, Giridharan N V, Jayavel R and Kumar J 2002 Mater. Lett. 52 80 [15] Reddy V R, Janardhanam V, Ju J W, Hong H and Choi C J 2014 Semicond. Sci. Technol. 29 075001 [16] Jia S, Li X, Li G, Xie S and Chen Y 2019 J. Mater. Sci. Mater. Electron. 30 9751 [17] Yang S Y, Zhan Q, Yang P L, Cruz M P, Chu Y H, Ramesh R, Wu Y R, Singh J, Tian W and Schlom D G 2007 Appl. Phys. Lett. 91 022909 [18] Yang A, Yao B, Ding Z, Deng R and Li Y 2021 Mater. Sci. Semicond. Process. 126 105659 [19] Niu W, Zhang Y, Gan Y, Christensen D V, Soosten M V, Garcia-Suarez E J, Riisager A, Wang X, Xu Y, Zhang R, Pryds N and Chen Y 2017 Nano Lett. 17 6878 [20] Lomenzo P D, Chung C, Zhou C, Jones J L and Nishida T 2017 Appl. Phys. Lett. 110 232904 [21] Muller J, Boscke T S, Schroder U, Mueller S, Brauhaus D, Bottger U, Frey L and Mikolajick T 2012 Nano Lett. 12 4318 [22] Wu C H, Han P C, Liu S C, Hsieh T E, Lumbantoruan F J, Ho Y H, Chen J Y, Yang K S, Wang H C, Lin Y K, Chang P C, Luc Q H, Lin Y C and Chang E Y 2018 IEEE Electron Dev. Lett. 39 991 [23] Faita F L, Silva J P B, Pereira M and Gomes M J M 2015 Appl. Phys. Lett. 107 242105 [24] Zhang W L, Mao Y H, Cui L, Tang M H, Su P Y, Long X J, Xiao Y G and Yan S A 2020 Phys. Chem. Chem. Phys. 22 21893 [25] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U and Mikolajick T 2012 Adv. Funct. Mater. 22 2412 [26] Starschich S, Griesche D, Schneller T, Waser R and Böttger U 2014 Appl. Phys. Lett. 104 202903 [27] Müller J, Schröder U, Böscke T S, Müller I, Böttger U, Wilde L, Sundqvist J, Lemberger M, Kücher P, Mikolajick T and Frey L 2011 J. Appl. Phys. 110 114113 [28] Wang J, Zhou D, Dong W, Yao Y, Sun N, Ali F, Hou X and Liu F 2020 Ceram. Int. 46 22550 [29] Chernikova A G, Kozodaev M G, Negrov D V, Korostylev E V, Park M H, Schroeder U, Hwang C S and Markeev A M 2018 ACS Appl. Mater. Interfaces 10 2701 [30] Schroeder U, Richter C, Park M H, Schenk T, Pesic M, Hoffmann M, Fengler F P G, Pohl D, Rellinghaus B, Zhou C, Chung C C, Jones J L and Mikolajick T 2018 Inorg. Chem. 57 2752 [31] Perevalov T V, Gritsenko V A, Gutakovskii A K and Prosvirin I P 2019 JETP Lett. 109 116 [32] Kim H B, Jung M, Oh Y, Lee S W, Suh D and Ahn J H 2021 Nanoscale 13 8524 [33] Zhang Z, Yu G, Zhang X, Deng X, Li S, Fan Y, Sun S, Song L, Tan S, Wu D, Li W, Huang W, Fu K, Cai Y, Sun Q and Zhang B 2016 IEEE Trans. Electron Dev. 63 731 [34] Fu C, Lin Z, Cui P, Lv Y, Zhou Y, Dai G, Luan C, Liu H and Cheng A 2018 App.l Phys. A Mater. Sci. Process. 124 299 [35] Yue Y, Hao Y, Zhang J, Feng Q, Ni J and Ma X 2008 Chin. Phys. B 17 1405 [36] Wang C, Wei Y C, Tan X, Ali L and Jing C Q 2021 Mater. Sci. Semicond. Process. 135 106038 [37] Chen H, Tang L, Liu L, Chen Y, Luo H, Yuan X and Zhang D 2021 Appl. Surf. Sci. 542 148737 [38] Xu Q, Chen K, Xu G, Xiang J, Gao J, Wang X, Li J, He X, Li J, Wang W and Chen D 2021 IEEE Trans. Electron Dev. 68 3696 [39] Wu J, Kanyang R, Han G, Zhou J, Liu Y, Wang Y, Peng Y, Zhang J, Sun Q Q, Zhang D W and Hao Y 2018 IEEE Electron Dev. Lett. 39 614 [40] Stolichnov I, Malin L, Muralt P and Setter N 2007 J. Eur. Ceram. Soc. 27 4307 [41] Kong Y C, Xue F S, Zhou J J, Li L, Chen C and Li Y R 2008 Appl. Phys. A Mater. Sci. Process. 95 703 [42] Jiang C, Liang R, Wang J and Xu J 2015 J. Phys. D:Appl. Phys. 48 365103 [43] Jang K, Ueyama N, Kobayashi M and Hiramoto T 2018 IEEE J. Electron Dev. 6 346 [44] Hung T H, Krishnamoorthy S, Esposto M, Neelim Nath D, Sung Park P and Rajan S 2013 Appl. Phys. Lett. 102 072105 [45] Li Z and Chow T P 2013 IEEE Trans. Electron Dev. 60 3230 [46] Osipov K, Ostermay I, Bodduluri M, Brunner F, Trankle G and Wurfl J 2018 IEEE Trans. Electron Dev. 65 3176 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|