Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 097307    DOI: 10.1088/1674-1056/ac7b1a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs

Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和)
Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology(GUET), Guilin 541004, China
Abstract  Ferroelectric (FE) HfZrO/Al$_{2}$O$_{3}$ gate stack AlGaN/GaN metal-FE-semiconductor heterostructure high-electron mobility transistors (MFSHEMTs) with varying Al$_{x}$Ga$_{1-x}$N barrier thickness and Al composition are investigated and compared by TCAD simulation with non-FE HfO$_{2}$/Al$_{2}$O$_{3}$ gate stack metal-insulator-semiconductor heterostructure high-electron mobility transistors (MISHEMTs). Results show that the decrease of the two-dimensional electron gas (2DEG) density with decreasing AlGaN barrier thickness is more effectively suppressed in MFSHEMTs than that in MISHEMTs due to the enhanced FE polarization switching efficiency. The electrical characteristics of MFSHEMTs, including transconductance, subthreshold swing, and on-state current, effectively improve with decreasing AlGaN thickness in MFSHEMTs. High Al composition in AlGaN barrier layers that are under 3-nm thickness plays a great role in enhancing the 2DEG density and FE polarization in MFSHEMTs, improving the transconductance and the on-state current. The subthreshold swing and threshold voltage can be reduced by decreasing the AlGaN thickness and Al composition in MFSHEMTs, affording favorable conditions for further enhancing the device.
Keywords:  ferroelectric polarization      HfZrO      ferroelectric gate      HEMTs  
Received:  06 April 2022      Revised:  02 June 2022      Accepted manuscript online:  22 June 2022
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  77.90.+k (Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)  
Fund: Project supported by Guangxi Science and Technology Planning Project (Grant Nos. AD19245066, AA19254015, AD21220150, and AD18281037), the National Nature Science Foundation of China (Grant Nos. 61874036, 62174041, and 62041403), China Postdoctoral Science Foundation (Grant No. 2020M683626XB), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Grant No. 2018GXNSFAA138025), Guangxi Innovation Research Team Project (Grant No. 2018GXNSFGA281004), GUET Excellent Graduate Thesis (Grant No. YXYJRX01), and the Fund from the State Key Laboratory of ASIC & System (Grant No. KVH1233021).
Corresponding Authors:  Haiou Li, Yonghe Chen     E-mail:  lihaiou@guet.edu.cn;yhchen@guet.edu.cn

Cite this article: 

Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和) Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs 2022 Chin. Phys. B 31 097307

[1] Fletcher A S A and Nirmal D 2017 Superlattices Microstruct. 109 519
[2] Rawat A, Surana V K, Meer M, Bhardwaj N, Ganguly S and Saha D 2019 IEEE Trans. Electron Dev. 66 2557
[3] Sandeep V and Pravin J C 2021 Superlattices Microstruct. 156 106954
[4] Reddy B P K, Teja K B R and Kandpal K 2018 Semiconductors 52 420
[5] Chung J W, Roberts J C, Piner E L and Palacios T 2008 IEEE Electron Dev. Lett. 29 1196
[6] Yue Y, Hao Y, Feng Q, Zhang J, Ma X and Ni J 2008 Sci. China, Ser. E 52 2762
[7] Meng D, Lin S, Wen C P, Wang M, Wang J, Hao Y, Zhang Y, Lau K M and Wu W 2013 IEEE Electron Dev. Lett. 34 738
[8] Sharma A and Roy K 2017 IEEE Electron Dev. Lett. 38 1165
[9] Vasić R, Consiglio S, Clark R D, Tapily K, Sallis S, Chen B, Newby D, Medikonda M, Raja Muthinti G, Bersch E, Jordan-Sweet J, Lavoie C, Leusink G J and Diebold A C 2013 J. Appl. Phys. 113 234101
[10] Saeidi A, Jazaeri F, Stolichnov I and Ionescu A M 2016 IEEE Trans. Electron Dev. 63 4678
[11] Cheng T D, Zhou N J and Li P 2015 J. Mater. Sci. Mater. Electron. 26 7104
[12] Zhu J, Chen L, Jiang J, Lu X, Yang L, Hou B, Liao M, Zhou Y, Ma X and Hao Y 2018 IEEE Electron Dev. Lett. 39 79
[13] Gruverman A, Cao W, Bhaskar S and Dey S K 2004 Appl. Phys. Lett. 84 5153
[14] Senthil Kumar M, Sumathi R R, Giridharan N V, Jayavel R and Kumar J 2002 Mater. Lett. 52 80
[15] Reddy V R, Janardhanam V, Ju J W, Hong H and Choi C J 2014 Semicond. Sci. Technol. 29 075001
[16] Jia S, Li X, Li G, Xie S and Chen Y 2019 J. Mater. Sci. Mater. Electron. 30 9751
[17] Yang S Y, Zhan Q, Yang P L, Cruz M P, Chu Y H, Ramesh R, Wu Y R, Singh J, Tian W and Schlom D G 2007 Appl. Phys. Lett. 91 022909
[18] Yang A, Yao B, Ding Z, Deng R and Li Y 2021 Mater. Sci. Semicond. Process. 126 105659
[19] Niu W, Zhang Y, Gan Y, Christensen D V, Soosten M V, Garcia-Suarez E J, Riisager A, Wang X, Xu Y, Zhang R, Pryds N and Chen Y 2017 Nano Lett. 17 6878
[20] Lomenzo P D, Chung C, Zhou C, Jones J L and Nishida T 2017 Appl. Phys. Lett. 110 232904
[21] Muller J, Boscke T S, Schroder U, Mueller S, Brauhaus D, Bottger U, Frey L and Mikolajick T 2012 Nano Lett. 12 4318
[22] Wu C H, Han P C, Liu S C, Hsieh T E, Lumbantoruan F J, Ho Y H, Chen J Y, Yang K S, Wang H C, Lin Y K, Chang P C, Luc Q H, Lin Y C and Chang E Y 2018 IEEE Electron Dev. Lett. 39 991
[23] Faita F L, Silva J P B, Pereira M and Gomes M J M 2015 Appl. Phys. Lett. 107 242105
[24] Zhang W L, Mao Y H, Cui L, Tang M H, Su P Y, Long X J, Xiao Y G and Yan S A 2020 Phys. Chem. Chem. Phys. 22 21893
[25] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U and Mikolajick T 2012 Adv. Funct. Mater. 22 2412
[26] Starschich S, Griesche D, Schneller T, Waser R and Böttger U 2014 Appl. Phys. Lett. 104 202903
[27] Müller J, Schröder U, Böscke T S, Müller I, Böttger U, Wilde L, Sundqvist J, Lemberger M, Kücher P, Mikolajick T and Frey L 2011 J. Appl. Phys. 110 114113
[28] Wang J, Zhou D, Dong W, Yao Y, Sun N, Ali F, Hou X and Liu F 2020 Ceram. Int. 46 22550
[29] Chernikova A G, Kozodaev M G, Negrov D V, Korostylev E V, Park M H, Schroeder U, Hwang C S and Markeev A M 2018 ACS Appl. Mater. Interfaces 10 2701
[30] Schroeder U, Richter C, Park M H, Schenk T, Pesic M, Hoffmann M, Fengler F P G, Pohl D, Rellinghaus B, Zhou C, Chung C C, Jones J L and Mikolajick T 2018 Inorg. Chem. 57 2752
[31] Perevalov T V, Gritsenko V A, Gutakovskii A K and Prosvirin I P 2019 JETP Lett. 109 116
[32] Kim H B, Jung M, Oh Y, Lee S W, Suh D and Ahn J H 2021 Nanoscale 13 8524
[33] Zhang Z, Yu G, Zhang X, Deng X, Li S, Fan Y, Sun S, Song L, Tan S, Wu D, Li W, Huang W, Fu K, Cai Y, Sun Q and Zhang B 2016 IEEE Trans. Electron Dev. 63 731
[34] Fu C, Lin Z, Cui P, Lv Y, Zhou Y, Dai G, Luan C, Liu H and Cheng A 2018 App.l Phys. A Mater. Sci. Process. 124 299
[35] Yue Y, Hao Y, Zhang J, Feng Q, Ni J and Ma X 2008 Chin. Phys. B 17 1405
[36] Wang C, Wei Y C, Tan X, Ali L and Jing C Q 2021 Mater. Sci. Semicond. Process. 135 106038
[37] Chen H, Tang L, Liu L, Chen Y, Luo H, Yuan X and Zhang D 2021 Appl. Surf. Sci. 542 148737
[38] Xu Q, Chen K, Xu G, Xiang J, Gao J, Wang X, Li J, He X, Li J, Wang W and Chen D 2021 IEEE Trans. Electron Dev. 68 3696
[39] Wu J, Kanyang R, Han G, Zhou J, Liu Y, Wang Y, Peng Y, Zhang J, Sun Q Q, Zhang D W and Hao Y 2018 IEEE Electron Dev. Lett. 39 614
[40] Stolichnov I, Malin L, Muralt P and Setter N 2007 J. Eur. Ceram. Soc. 27 4307
[41] Kong Y C, Xue F S, Zhou J J, Li L, Chen C and Li Y R 2008 Appl. Phys. A Mater. Sci. Process. 95 703
[42] Jiang C, Liang R, Wang J and Xu J 2015 J. Phys. D:Appl. Phys. 48 365103
[43] Jang K, Ueyama N, Kobayashi M and Hiramoto T 2018 IEEE J. Electron Dev. 6 346
[44] Hung T H, Krishnamoorthy S, Esposto M, Neelim Nath D, Sung Park P and Rajan S 2013 Appl. Phys. Lett. 102 072105
[45] Li Z and Chow T P 2013 IEEE Trans. Electron Dev. 60 3230
[46] Osipov K, Ostermay I, Bodduluri M, Brunner F, Trankle G and Wurfl J 2018 IEEE Trans. Electron Dev. 65 3176
[1] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[2] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[3] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[4] Degradation of gate-recessed MOS-HEMTs and conventional HEMTs under DC electrical stress
Yi-Dong Yuan(原义栋), Dong-Yan Zhao(赵东艳), Yan-Rong Cao(曹艳荣), Yu-Bo Wang(王于波), Jin Shao(邵瑾), Yan-Ning Chen(陈燕宁), Wen-Long He(何文龙), Jian Du(杜剑), Min Wang(王敏), Ye-Ling Peng(彭业凌), Hong-Tao Zhang(张宏涛), Zhen Fu(付振), Chen Ren(任晨), Fang Liu(刘芳), Long-Tao Zhang(张龙涛), Yang Zhao(赵扬), Ling Lv(吕玲), Yi-Qiang Zhao(赵毅强), Xue-Feng Zheng(郑雪峰), Zhi-Mei Zhou(周芝梅), Yong Wan(万勇), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2021, 30(7): 077305.
[5] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[6] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[7] Analysis on degradation mechanisms of normally-off p-GaN gate AlGaN/GaN high-electron mobility transistor
Si-De Song(宋思德), Su-Zhen Wu(吴素贞), Guo-Zhu Liu(刘国柱), Wei Zhao(赵伟), Yin-Quan Wang(王印权), Jian-Wei Wu(吴建伟), and Qi He(贺琪). Chin. Phys. B, 2021, 30(4): 047103.
[8] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[9] Experimental evaluation of interface states during time-dependent dielectric breakdown of GaN-based MIS-HEMTs with LPCVD-SiNx gate dielectric
Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Tao-Tao Que(阙陶陶), Qiu-Ling Qiu(丘秋凌), Liang He(何亮), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(6): 067203.
[10] Effect of overdrive voltage on PBTI trapping behavior in GaN MIS-HEMT with LPCVD SiNx gate dielectric
Tao-Tao Que(阙陶陶), Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Liang He(何亮), Qiu-Ling Qiu(丘秋凌), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(3): 037201.
[11] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
[12] Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰). Chin. Phys. B, 2020, 29(12): 127101.
[13] Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments
Si-Qi Jing(荆思淇), Xiao-Hua Ma(马晓华), Jie-Jie Zhu(祝杰杰)†, Xin-Chuang Zhang(张新创), Si-Yu Liu(刘思雨), Qing Zhu(朱青), and Yue Hao(郝跃). Chin. Phys. B, 2020, 29(10): 107302.
[14] Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors
Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(6): 067304.
[15] 1.8-kV circular AlGaN/GaN/AlGaN double-heterostructure high electron mobility transistor
Sheng-Lei Zhao(赵胜雷), Zhi-Zhe Wang(王之哲), Da-Zheng Chen(陈大正), Mao-Jun Wang(王茂俊), Yang Dai(戴扬), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(2): 027301.
No Suggested Reading articles found!