Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107302    DOI: 10.1088/1674-1056/ab99bb
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments

Si-Qi Jing(荆思淇)1,2, Xiao-Hua Ma(马晓华)2, Jie-Jie Zhu(祝杰杰)1,2,†, Xin-Chuang Zhang(张新创)1,2, Si-Yu Liu(刘思雨)1,2, Qing Zhu(朱青)1,2, and Yue Hao(郝跃)2
1 School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710071, China
2 Key Laboratory of Wide Bandgap Semiconductor Technology, Xidian University, Xi’an 710071, China
Abstract  

Trapping effect in normally-off Al2O3/AlGaN/GaN metal–oxide–semiconductor (MOS) high-electron-mobility transistors (MOS-HEMTs) with post-etch surface treatment was studied in this paper. Diffusion-controlled interface oxidation treatment and wet etch process were adopted to improve the interface quality of MOS-HEMTs. With capacitance–voltage (CV) measurement, the density of interface and border traps were calculated to be 1.13 × 1012 cm−2 and 6.35 × 1012 cm−2, effectively reduced by 27% and 14% compared to controlled devices, respectively. Furthermore, the state density distribution of border traps with large activation energy was analyzed using photo-assisted CV measurement. It is found that irradiation of monochromatic light results in negative shift of CV curves, which indicates the electron emission process from border traps. The experimental results reveals that the major border traps have an activation energy about 3.29 eV and the change of post-etch surface treatment process has little effect on this major activation energy.

Keywords:  AlGaN/GaN MOS-HEMTs      interface traps      border traps      photo-assisted C-V measurement  
Received:  24 April 2020      Revised:  01 June 2020      Accepted manuscript online:  05 June 2020
PACS:  73.61.Ey (III-V semiconductors)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
Corresponding Authors:  Corresponding author. E-mail: jjzhu@mail.xidian.edu.cn   
About author: 
†Corresponding author. E-mail: jjzhu@mail.xidian.edu.cn
* Project supported by the National Natural Science Foundation of China (Grant Nos. 61704124, 11690042, and 61634005).

Cite this article: 

Si-Qi Jing(荆思淇), Xiao-Hua Ma(马晓华), Jie-Jie Zhu(祝杰杰)†, Xin-Chuang Zhang(张新创), Si-Yu Liu(刘思雨), Qing Zhu(朱青), and Yue Hao(郝跃) Interface and border trapping effects in normally-off Al2O3/AlGaN/GaN MOS-HEMTs with different post-etch surface treatments 2020 Chin. Phys. B 29 107302

Fig. 1.  

Schematic cross section of recess-gate Al2O3/AlGaN/GaN MOS-HEMTs.

Fig. 2.  

(a)-(b) Cross-sectional TEM micrographs of recess-gate Al2O3/AlGaN/GaN MOSHEMTs and (c)–(d) the enlarged view at Al2O3/GaN interface: (a) sample 1# with DCIO and wet etch post-etch surface treatment and (b) the controlled sample 2#.

Fig. 3.  

Influence of post-etch surface treatment on normally-off Al2O3/AlGaN/GaN MOS-HEMTs in terms of (a) transfer and transconductance characteristics and (b) breakdown characteristics.

Fig. 4.  

Sequential CV hysteresis curves of Al2O3/AlGaN/GaN MOS-HEMTs (a) without and (b) with DCIO treatment and wet etch.

Fig. 5.  

Voltage shift due to (a) interface traps and (b) border traps as a function of program voltage for normally-off Al2O3/AlGaN/GaN MOS-HEMTs.

Fig. 6.  

(a) Typical photo-assisted CV characteristics of normally-off MOS-HEMTs before and after light illumination with different wavelength. (b) Gate voltage at C = 150 nF/cm2 as a function of wavelength varying from 500 nm to 360 nm. The lower and upper dashed lines for each device show the reference voltage level under dark before and after trap filling.

Fig. 7.  

State density distribution of border traps in normally-off MOS-HEMTs with and without DCIO treatment and wet etch.

[1]
Taking S, Macfarlance D, Wasige E 2011 IEEE Electron Dev. Lett. 58 1418 DOI: 10.1109/TED.2011.2114665
[2]
Hou B, Ma X H, Yang L, Zhu J J, Zhu Q, Chen L X, Mi M H, Zhang H S, Zhang M, Zhang P, Zhou X W, Hao Y 2017 Appl. Phys. Express 10 076501 DOI: 10.7567/APEX.10.076501
[3]
Zheng X F, Wang A C, Hou X H, Wang Y Z, Wen H Y, Wang C, Lu Y, Mao W, Ma X H, Hao Y 2017 Chin. Phys. Lett. 34 27301 DOI: 10.1088/0256-307X/34/2/027301
[4]
Khandelwal S, Goyal N, Fjeldly T A 2011 IEEE Electron Dev. Lett. 58 3622 DOI: 10.1109/TED.2011.2161314
[5]
Roberts J W, Chalker P R, Lee K B, Houston P A, Cho S J, Thayne I G, Guiney I, Wallis D, Humphreys C J 2016 Appl. Phys. Lett. 108 072901 DOI: 10.1063/1.4942093
[6]
Hou B, Ma X H, Zhu J J, Yang L, Chen W W, Mi M H, Zhu Q, Chen L X, Zhang R, Zhang M, Zhou X W, Hao Y 2018 IEEE Electron Dev. Lett. 39 397 DOI: 10.1109/LED.2018.2791441
[7]
Mochizuki K, Mishima T, Terano A, Kaneda N, Ishigaki T, Tsuchiya T 2011 IEEE Trans. Electron. Dev. 58 1979 DOI: 10.1109/TED.2011.2145380
[8]
Liu Z H, Ng G I, Arulkumaran S, Maung Y K T, Teo K L, Foo S C, Sahmugan-athan V 2009 Appl. Phys. Lett. 95 223501 DOI: 10.1063/1.3268474
[9]
Ma X H, Zhu J J, Liao X Y, Yue T, Chen W W, Hao Y 2013 Appl. Phys. Lett. 103 033510 DOI: 10.1063/1.4813912
[10]
Zhou Q, Liu L, Zhang A B, Chen B W, Jin Y, Shi Y Y, Wang Z H, Chen W J, Zhang B 2016 IEEE Electron Dev. Lett. 37 165 DOI: 10.1109/LED.2015.2511026
[11]
Sang F, Wang M J, Tao M, Liu S F, Yu M, Xie B, Wen C P, Wang J Y, Wu W G, Hao Y L, Shen B 2016 Appl. Phys. Express 9 091001 DOI: 10.7567/APEX.9.091001
[12]
Zhu J J, Zhu Q, Chen L X, Hou B, Yang L, Zhou X W, Ma X H, Hao Y 2017 IEEE Trans. Electron. Dev. 64 840 DOI: 10.1109/TED.2017.2657780
[13]
Wang M J, Wang Y, Zhang C, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J, Shen B 2014 IEEE Trans. Electron. Dev. 61 2035 DOI: 10.1109/TED.2014.2315994
[14]
Fleetwood D M, Winokur P S, Reber J R A, Meisenheimer T L, Schwank J R, Shaneyfelt M R, Riewe L C 1993 J. Appl. Phys. 73 5058 DOI: 10.1063/1.353777
[15]
Ogawa S, Shimaya M, Shiono N 1995 J. Appl. Phys. 77 1137 DOI: 10.1063/1.358977
[16]
Zhu J J, Ma X H, Hou B, Ma M, Zhu Q, Chen L X, Yang L, Zhang P, Zhou X W, Hao Y 2018 IEEE Trans. Electron. Dev. 65 5343 DOI: 10.1109/TED.2018.2874314
[17]
Yang S, Tang Z K, Wong K Y, Lin Y S, Liu C, Lu Y Y, Huang S, Chen K J 2013 IEEE Electron Dev. Lett. 34 1497 DOI: 10.1109/LED.2013.2286090
[18]
Partida-Manzanera T, Zaid Z H, Roberts J W, Dolmanan S B, Lee K B, Houston P A, Chalker P R, Tripathy S, Potter R J 2019 J. Appl. Phys. 126 034102 DOI: 10.1063/1.5049220
[19]
Zhu J J, Ma M, Zhu Q, Hou B, Chen L X, Yang L, Zhou X W, Ma X H, Hao Y 2018 2018 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia WiPDA Asia May 17–19, 2018 Xi’an, China 135 DOI: 10.1109/WiPDAAsia.2018.8734573
[20]
Zhu J J, Zhang Y C, Ma X H, Liu S Y, Jing S Q, Zhu Q, Mi M H, Hou B, Yang L, Uren M J, Kuball M, Hao Y 2020 Semiconductor Science and Technology 35 065017 DOI: 10.1088/1361-6641/ab8356
[21]
Sun H, Wang M J, Yin R Y, Chen J G, Xue S, Luo J S, Hao Y L, Chen D M 2019 IEEE Trans. Electron. Dev. 66 3290 DOI: 10.1109/TED.16
[22]
Wang H Y, Wang J Y, Liu J Q, He Y D, Wang M J, Yu M, Wu W G 2018 Solid-State Electron. 141 13 DOI: 10.1016/j.sse.2017.11.005
[23]
Zheng X F, Dong S S, Ji P, Wang C, He Y L, Lv L, Ma X H, Hao Y 2018 Appl. Phys. Lett. 112 233504 DOI: 10.1063/1.5024645
[24]
Liu S H, Yang S, Tang Z K, Jiang Q M, Liu C, Wang M J, Shen B, Chen K J 2015 Appl. Phys. Lett. 106 051605 DOI: 10.1063/1.4907861
[25]
Qin X Y, Lucero A, Azcatl A, Kim J, Wallace R M 2014 Appl. Phys. Lett. 105 011602 DOI: 10.1063/1.4887056
[26]
Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L, Feng Z H 2018 Acta Phys. Sin. 67 178501 in Chinese DOI: 10.7498/aps.67.20180474
[27]
Bao S Q G W, Ma X H, Chen W W, Yang L, Hou B, Zhu Q, Zhu J J, Hao Y 2019 Chin. Phys. Lett 28 067304 DOI: 10.1088/0256-307X/28/6/067304
[28]
Shen Z, He L, Zhou G L, Yao Y, Yang F, Ni Y Q, Zheng Y, Zhou D Q, Ao J P, Zhang B J, Liu Y 2016 Phys. Status Solidi 213 2693 DOI: 10.1002/pssa.201532785
[29]
Yatabe Z, Hori Y, Ma W C, Asubar J T, Akazawa M, Sato T, Hashizume T 2014 J. Appl. Phys. 53 100213 DOI: 10.7567/JJAP.53.100213
[1] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[2] Impact of O2 post oxidation annealing on the reliability of SiC/SiO2 MOS capacitors
Peng Liu(刘鹏), Ji-Long Hao(郝继龙), Sheng-Kai Wang(王盛凯), Nan-Nan You(尤楠楠), Qin-Yu Hu(胡钦宇), Qian Zhang(张倩), Yun Bai(白云), and Xin-Yu Liu(刘新宇). Chin. Phys. B, 2021, 30(7): 077303.
[3] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[4] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[5] Method of evaluating interface traps in Al2O3/AlGaN/GaN high electron mobility transistors
Si-Qin-Gao-Wa Bao(包斯琴高娃), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Ling Yang(杨凌), Bin Hou(侯斌), Qing Zhu(朱青), Jie-Jie Zhu(祝杰杰), Yue Hao(郝跃). Chin. Phys. B, 2019, 28(6): 067304.
[6] Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study
Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏). Chin. Phys. B, 2017, 26(3): 037104.
[7] Flat-roof phenomenon of dynamic equilibrium phase in the negative bias temperature instability effect on a power MOSFET
Zhang Yue (张月), Zhuo Qing-Qing (卓青青), Liu Hong-Xia (刘红侠), Ma Xiao-Hua (马晓华), Hao Yue (郝跃). Chin. Phys. B, 2014, 23(5): 057304.
[8] Study on the degradation of NMOSFETs with ultra-thin gate oxide under channel hot electron stress at high temperature
Hu Shi-Gang(胡仕刚),Hao Yue(郝跃), Ma Xiao-Hua(马晓华), Cao Yan-Rong(曹艳荣), Chen Chi(陈炽), and Wu Xiao-Feng(吴笑峰) . Chin. Phys. B, 2009, 18(12): 5479-5484.
[9] Degradation characteristics and mechanism of PMOSFETs under NBT--PBT--NBT stress
Liu Hong-Xia(刘红侠), Li Zhong-He(李忠贺), and Hao Yue(郝跃). Chin. Phys. B, 2007, 16(5): 1445-1449.
[10] The role of hydrogen in negative bias temperature instability of pMOSFET
Li Zhong-He (李忠贺), Liu Hong-Xia (刘红侠), Hao Yue (郝跃). Chin. Phys. B, 2006, 15(4): 833-838.
No Suggested Reading articles found!