|
|
On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal |
Bingyan Jiang(江丙炎)1, Jiaji Zhao(赵嘉佶)1, Lujunyu Wang(王陆君瑜)1, Ran Bi(毕然)1, Juewen Fan(范珏雯)1, Zhilin Li(李治林)2, and Xiaosong Wu(吴孝松)1,3,† |
1 State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract The Onsager-Casimir reciprocal relations are a fundamental symmetry of nonequilibrium statistical systems. Here we study an unusual chirality-dependent Hall effect in a tilted Weyl semimetal Co3Sn2S2 with broken time-reversal symmetry. It is confirmed that the reciprocal relations are satisfied. Since two Berry curvature effects, an anomalous velocity and a chiral chemical potential, contribute to the observed Hall effect, the reciprocal relations suggest their intriguing connection.
|
Received: 07 May 2022
Revised: 30 May 2022
Accepted manuscript online: 02 June 2022
|
PACS:
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
85.30.Fg
|
(Bulk semiconductor and conductivity oscillation devices (including Hall effect devices, space-charge-limited devices, and Gunn effect devices))
|
|
Fund: We are grateful for discussions with J. Feng, J. R. Shi and H. Z. Lu. Project supported by the National Key Basic Research Program of China (Grant No. 2020YFA0308800) and the National Natural Science Foundation of China (Grant Nos. 11774009 and 12074009), the Natural Science Foundation of Beijing (Grant No. Z200008), and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2021008). |
Corresponding Authors:
Xiaosong Wu
E-mail: xswu@pku.edu.cn
|
Cite this article:
Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Lujunyu Wang(王陆君瑜), Ran Bi(毕然), Juewen Fan(范珏雯), Zhilin Li(李治林), and Xiaosong Wu(吴孝松) On the Onsager-Casimir reciprocal relations in a tilted Weyl semimetal 2022 Chin. Phys. B 31 097306
|
[1] Onsager L 1931 Phys. Rev. 37 405 [2] Onsager L 1931 Phys. Rev. 38 2265 [3] Jacquod P, Whitney R S, Meair J and Büttiker M 2012 Phys. Rev. B 86 155118 [4] Zyuzin V A 2017 Phys. Rev. B 95 245128 [5] Sharma G, Goswami P and Tewari S 2017 Phys. Rev. B 96 045112 [6] Wei Y W, Li C K, Qi J and Feng J 2018 Phys. Rev. B 97 205131 [7] Ma D, Jiang H, Liu H and Xie X C 2019 Phys. Rev. B 99 115121 [8] Das K and Agarwal A 2019 Phys. Rev. B 99 085405 [9] Johansson A, Henk J and Mertig I 2019 Phys. Rev. B 99 075114 [10] Kundu A, Siu Z B, Yang H and Jalil M B A 2020 New J. Phys. 22 083081 [11] Jiang B, Wang L, Bi R, Fan J, Zhao J, Yu D, Li Z and Wu X 2021 Phys. Rev. Lett. 126 236601 [12] Yang H, You W, Wang J, Huang J, Xi C, Xu X, Cao C, Tian M, Xu Z A, Dai J and Li Y 2020 Phys. Rev. Materials 4 024202 [13] Wang Q, Xu Y, Lou R, Liu Z, Li M, Huang Y, Shen D, Weng H, Wang S and Lei H 2018 Nat. Commun. 9 3681 [14] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 [15] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282 [16] Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N and Beidenkopf H 2019 Science 365 1286 [17] Guin S N, Vir P, Zhang Y, Kumar N, Watzman S J, Fu C, Liu E, Manna K, Schnelle W, Gooth J, Shekhar C, Sun Y and Felser C 2019 Adv. Mater. 31 1806622 [18] Shen J, Zeng Q, Zhang S, Tong W, Ling L, Xi C, Wang Z, Liu E, Wang W, Wu G and Shen B 2019 Appl. Phys. Lett. 115 212403 [19] Yin J X, Zhang S S, Chang G, Wang Q, Tsirkin S S, Guguchia Z, Lian B, Zhou H, Jiang K, Belopolski I, Shumiya N, Multer D, Litskevich M, Cochran T A, Lin H, Wang Z, Neupert T, Jia S, Lei H and Hasan M Z 2019 Nat. Phys. 15 443 [20] Geishendorf K, Schlitz R, Vir P, Shekhar C, Felser C, Nielsch K, Goennenwein S T B and Thomas A 2019 Appl. Phys. Lett. 114 092403 [21] Yang S Y, Noky J, Gayles J, Dejene F K, Sun Y, Dorr M, Skourski Y, Felser C, Ali M N, Liu E and Parkin S S P 2020 Nano Lett. 20 7860 [22] Tanaka M, Fujishiro Y, Mogi M, Kaneko Y, Yokosawa T, Kanazawa N, Minami S, Koretsune T, Arita R, Tarucha S, Yamamoto M and Tokura Y 2020 Nano Lett. 20 7476 [23] Shama, Gopal R K and Singh Y 2020 J. Magn. Magn. Mater. 502 166547 [24] Lachman E, Murphy R A, Maksimovic N, Kealhofer R, Haley S, McDonald R D, Long J R and Analytis J G 2020 Nat. Commun. 11 560 [25] Shen J, Yao Q, Zeng Q, Sun H, Xi X, Wu G, Wang W, Shen B, Liu Q and Liu E 2020 Phys. Rev. Lett. 125 086602 [26] Xu Y, Zhao J, Yi C, Wang Q, Yin Q, Wang Y, Hu X, Wang L, Liu E, Xu G, Lu L, Soluyanov A A, Lei H, Shi Y, Luo J and Chen Z G 2020 Nat. Commun. 11 3985 [27] Geishendorf K, Vir P, Shekhar C, Felser C, Facio J I, van den Brink J, Nielsch K, Thomas A and Goennenwein S T B 2020 Nano Lett. 20 300 [28] Ding L, Koo J, Yi C, Xu L, Zuo H, Yang M, Shi Y, Yan B, Behnia K and Zhu Z 2021 J. Phys. D:Appl. Phys. 54 454003 [29] Howard S, Jiao L, Wang Z, Morali N, Batabyal R, Kumar-Nag P, Avraham N, Beidenkopf H, Vir P, Liu E, Shekhar C, Felser C, Hughes T and Madhavan V 2021 Nat. Commun. 12 4269 [30] Zhang Q, Okamoto S, Samolyuk G D, Stone M B, Kolesnikov A I, Xue R, Yan J, McGuire M A, Mandrus D and Tennant D A 2021 Phys. Rev. Lett. 127 117201 [31] Büttiker M 1986 Phys. Rev. Lett. 57 1761 [32] Büttiker M 1988 IBM J. Res. Dev. 32 317 [33] Casimir H B G 1945 Rev. Mod. Phys. 17 343 [34] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959 [35] Xiao D, Shi J and Niu Q 2005 Phys. Rev. Lett. 95 137204 [36] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|