CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology |
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰)† |
School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China |
|
|
Abstract The impact of supercritical CO2/H2O technology on the threshold-voltage instability of AlGaN/GaN metal-insulator semiconductor high-electron-mobility transistors (MIS-HEMTs) is investigated. The MIS-HEMTs were placed in a supercritical fluid system chamber at 150 °C for 3 h. The chamber was injected with CO2 and H2O at pressure of 3000 psi (1 psi≈6.895 kPa). Supercritical H2O fluid has the characteristics of liquid H2O and gaseous H2O at the same time, that is, high penetration and high solubility. In addition, OH- produced by ionization of H2O can fill the nitrogen vacancy near the Si3N4/GaN/AlGaN interface caused by high temperature process. After supercritical CO2/H2O treatment, the threshold voltage shift is reduced from 1 V to 0.3 V. The result shows that the threshold voltage shift of MIS-HEMTs could be suppressed by supercritical CO2/H2O treatment.
|
Received: 08 May 2020
Revised: 31 July 2020
Accepted manuscript online: 25 August 2020
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by Shenzhen Science and Technology Innovation Committee (Grant Nos. ZDSYS201802061805105, JCYJ20190808155007550, QJSCX20170728102129176, and JCYJ20170810163407761) and the National Natural Science Foundation of China (Grant No. U1613215). |
Corresponding Authors:
†Corresponding author. E-mail: yfjin@pku.edu.cn
|
Cite this article:
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰) Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology 2020 Chin. Phys. B 29 127101
|
[1] Ikeda N, Niiyama Y, Kambayashi H, Sato Y, Nomura T, Kato S and Yoshida S Proc. IEEE 98 1151 DOI: 10.1109/JPROC.2009.20343972010 [2] Liu Z H, Ng G I, Arulkumaran S, Maung Y K T, Teo K L, Foo S C, Sahmuganathan V, Xu T and Lee C H IEEE Electron Device Lett. 31 96 DOI: 10.1109/LED.2009.20361352010 [3] Chen K J and Zhou C Phys. Status Solidi 208 434 DOI: 10.1002/pssa.2010006312011 [4] Zhang Z, Li W, Fu K, Yu G, Zhang X, Zhao Y, Sun S, Song L, Deng X, Xing Z, Yang L, Ji R, Zeng C, Fan Y, Dong Z, Cai Y and Zhang B S IEEE Electron Device Lett. 38 236 DOI: 10.1109/LED.2016.26361362017 [5] Chattopadhyay P and Gupta R B Int. J. Pharm. 228 19 DOI: 10.1016/S0378-5173(01)00803-12001 [6] Tsai C T, Chang T C, Liu P T, Yang P Y, Kuo Y C, Kin K T, Chang P L and Huang F S Appl. Phys. Lett. 91 012109 DOI: 10.1063/1.27537622007 [7] Chang K C, Pan C H, Chang T C, Tsai T M, Zhang R, Lou J C, Young T F, Chen J H, Shih C C, Chu T J, Chen J Y, Su Y T, Jiang J P, Chen K H, Huang H C, Syu Y E, Gan D S and Sze S M IEEE Electron Device Lett. 34 617 DOI: 10.1109/LED.552013 [8] Sun H, Wang M, Chen J, Liu P, Kuang W, Liu M, Hao Y and Chen D IEEE Trans. Electron Devices 65 11 DOI: 10.1109/TED.2017.27728042018 [9] Zhang K, Kong Y, Zhu G, Zhou J, Yu X, Kong C, Li Z and Chen T IEEE Electron Device Lett. 38 615 DOI: 10.1109/LED.2017.26874402017 [10] Hashizume T and Hasegawa H Appl. Surf. Sci. 234 1 DOI: 10.1016/j.apsusc.2004.05.0862004 [11] Robertson J Appl. Phys. Lett. 94 152104 DOI: 10.1063/1.31205542009 [12] Amarnath G, Swain R and Lenka T R Int. J. Numerical Modelling: Electronic Networks Devices and Fields 31 e2268 DOI: 10.1002/jnm.22682017 [13] Swain R, Jena K and Lenka T R Mater. Sci. Semiconduct. Process. 53 66 DOI: 10.1016/j.mssp.2016.06.0082016 [14] Wu T L, Marcon D, Zahid M B, Hove M V, Decoutere S and Groeseneken G IEEE International Reliability Physics Symposium 10 1109 DOI: 10.1109/irps.2013.65319872013 [15] Meneghini M, Rossetto I, Bisi D, Ruzzarin M, Hove M V, Stoffels S, Wu T L, Marcon D, Decoutere S, Meneghesso G and Zanoni E IEEE Electron Device Lett. 37 474 DOI: 10.1109/LED.2016.25306932016 [16] Wu T L, Franco J, Marcon D, Jaeger B D, Bakeroot B, Stoffels S, Hove M V, Groeseneken G and Decoutere S IEEE Trans. Electron Devices 63 1853 DOI: 10.1109/TED.2016.25393412016 [17] Lagger P, Reiner M, Pogany D and Ostermaier C IEEE Trans. Electron Devices 61 1022 DOI: 10.1109/TED.2014.23038532014 [18] Wang H C, Lumbantoruan F J, Hsieh T E, Wu C H, Lin Y C and Chang E Y IEEE J. Electron Devices Soc. 6 1136 DOI: 10.1109/JEDS.2018.28697762018 [19] Stoklas R, Gregušová D, Hasenöhrl S and Brytavskyi E Appl. Surf. Sci. 461 255 DOI: 10.1016/j.apsusc.2018.05.1912018 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|