Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 085201    DOI: 10.1088/1674-1056/ac597a
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy

Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  A combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy is investigated. Depositing Au nanoparticles at the surface of a brass target can enhance the coupling of the target and the laser. More atoms in the brass sample are excited. As a secondary excitation source, spark discharge reheats the generated plasma, which further amplifies the enhancement results of nanoparticles. The spectral intensity with the spark discharge increases more obviously with nanoparticle concentration increasing than without the spark discharge. Also, plasma temperature and electron density are calculated by the Boltzmann plot and Stark broadening. The changes in the plasma temperature and electron density are consistent with the spectral emission changes.
Keywords:  laser-induced plasma spectroscopy      spark discharge      nanoparticle      spectral enhancement  
Received:  08 December 2021      Revised:  13 February 2022      Accepted manuscript online:  02 March 2022
PACS:  52.50.Lp (Plasma production and heating by shock waves and compression)  
  52.38.Mf (Laser ablation)  
  32.30.Jc (Visible and ultraviolet spectra)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0307701), the National Natural Science Foundation of China (Grant Nos. 11674128, 11674124, and 11974138), and the Jilin Provincial Scientific and Technological Development Program, China (Grant No. 20170101063JC).
Corresponding Authors:  An-Min Chen, Ming-Xing Jin     E-mail:  amchen@jlu.edu.cn;mxjin@jlu.edu.cn

Cite this article: 

Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星) Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy 2022 Chin. Phys. B 31 085201

[1] Wu D, Sun L, Liu P, Hai R and Ding H 2018 Appl. Spectrosc. 72 225
[2] Liu P, Liu J, Wu D, Sun L, Hai R and Ding H 2018 Plasma Chem. Plasma P. 38 803
[3] Guo K, Chen A and Gao X 2020 Optik 208 164067
[4] Zhang D, Chen A, Wang Q, Xu W and Jin M 2019 Optik 202 163511
[5] Yang L, Liu M, Liu Y T, Li Q X, Li S Y, Jiang Y F, Chen A M and Jin M X 2020 Chin. Phys. B 29 065203
[6] Yang H X, Fu H B, Wang H D, Jia J W, Sigrist M W and Dong F Z 2016 Chin. Phys. B 25 065201
[7] Wang X S, Ma Y M, Gao X and Lin J Q 2020 Acta Phys. Sin. 69 029502 (in Chinese)
[8] Gaft M, Nagli L, Gornushkin I and Raichlin Y 2020 Spectrochim. Acta B:At. Spectrosc. 173 105989
[9] Li Y, Tian D, Ding Y, Yang G, Liu K, Wang C and Han X 2018 Appl. Spectrosc. Rev. 53 1
[10] Yang X, Li S, Jiang Y, Chen A and Jin M 2019 Acta Phys. Sin. 68 065201 (in Chinese)
[11] Dong P K, Zhao S Y, Zheng K X, Wang J, Gao X, Hao Z Q and Lin J Q 2021 Acta Phys. Sin. 70 040201 (in Chinese)
[12] Peng Y, Zhang D S, Chen H Y, Wen Y, Luo S D, Chen L, Chen K J and Zhu Y M 2012 Appl. Opt. 51 635
[13] Schuller J A, Barnard E S, Cai W, Jun Y C, White J S and Brongersma M L 2010 Nat. Mater 9 193
[14] De Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M and De Pascale O 2014 Spectrochim. Acta B:At. Spectrosc. 98 19
[15] De Giacomo A, Gaudiuso R, Koral C, Dell'Aglio M and De Pascale O 2013 Anal. Chem. 85 10180
[16] Wang Y Y, Zhao N J, Ma M J, Yu Y, Meng D S, Gu Y H, Jia Y, Liu J G and Liu W Q 2017 Spectrosc. Spect. Anal. 37 1525
[17] Li X, Yang Z, Wu J, Wei W, Qiu Y, Jia S and Qiu A 2017 J. Phys. D:Appl. Phys. 50 015203
[18] Li B H, Gao X, Song C and Lin J Q 2016 Acta Phys. Sin. 65 235201 (in Chinese)
[19] Lednev V N, Grishin M Y, Sdvizhenskii P A, Asyutin R D, Tretyakov R S, Stavertiy A Y and Pershin S M 2019 J. Anal. At. Spectrom. 34 607
[20] Hai R, He Z, Wu D, Tong W, Sattar H, Imran M and Ding H 2019 J. Anal. At. Spectrom. 34 2378
[21] Sanginés R, Sobral H and Alvarez-Zauco E 2012 Spectrochim. Acta B:At. Spectrosc. 68 40
[22] Hussain A, Tanveer M, Farid G, Hussain M B, Azam M and Khan W 2018 Optik 172 1012
[23] Waheed S, Bashir S, Dawood A, Anjum S, Akram M, Hayat A, Amin S and Zaheer A 2017 Optik 140 536
[24] Hussain A, Gao X, Hao Z and Lin J 2016 Optik 127 10024
[25] Babushok V I, DeLucia F C, Gottfried J L, Munson C A and Miziolek A W 2006 Spectrochim. Acta B:At. Spectrosc. 61 999
[26] Li K, Zhou W, Shen Q, Shao J and Qian H 2010 Spectrochim. Acta B:At. Spectrosc. 65 420
[27] Zhou W, Li K, Li X, Qian H and Liu W 2011 Opt. Lett. 36 2961
[28] Zhou W, Li K, Qian H, Ren Z and Yu Y 2012 Appl. Opt. 51 B42
[29] Hassanimatin M M, Tavassoli S H, Nosrati Y and Safi A 2019 Phys. Plasmas 26 033303
[30] Guo J, Wang T, Shao J, Chen A and Jin M 2018 J. Anal. At. Spectrom. 33 2116
[31] Guo L, Hu W, Zhang B, He X, Li C, Zhou Y, Cai Z, Zeng X and Lu Y 2011 Opt. Express 19 14067
[32] Hao Z, Guo L, Li C, Shen M, Zou X, Li X, Lu Y and Zeng X 2014 J. Anal. At. Spectrom. 29 2309
[33] Guo L, Zhang B, He X, Li C, Zhou Y, Wu T, Park J, Zeng X and Lu Y 2012 Opt. Express 20 1436
[34] Su X J, Zhou W D and Qian H G 2014 J. Anal. At. Spectrom. 29 2356
[35] Yang F, Jiang L, Wang S, Cao Z, Liu L, Wang M and Lu Y 2017 Opt. Laser Technol. 93 194
[36] Zhang D, Chen A, Chen Y, Wang Q, Li S, Jiang Y and Jin M 2021 J. Anal. At. Spectrom. 36 1280
[37] Wang Y, Jiang Y, He X, Chen Y and Li R 2018 Spectrochim. Acta B:At. Spectrosc. 150 9
[38] Koral C, Gaudiuso R, De A and Giacomo 2014 Spectrochim. Acta B:At. Spectrosc. 98 19
[39] Galbács G, Kéri A, Kohut A, Veres M and Geretovszky Zs 2021 J. Anal. At. Spectrom. 36 1826
[40] Mutic, Jelena, Momcilovic, Milos, Trtica, Milan, Zivkovic, Sanja, Savovic and Staicu 2017 Spectrochim. Acta B:At. Spectrosc. 128 22
[41] De Giacomo A, Dell'Aglio M, Gaudiuso R, Koral C and Valenza G 2016 J. Anal. At. Spectrom. 31 1566
[42] Marinica D C, Kazansky A K, Nordlander P, Aizpurua J and Borisov A G 2012 Nano Lett. 12 1333
[43] El Sherbini A M and Parigger C G 2016 Spectrochim. Acta B:At. Spectrosc. 124 79
[44] Zorba V, Mao X and Russo R E 2015 Spectrochim. Acta B:At. Spectrosc. 113 37
[45] Zhang S, Wang X, He M, Jiang Y, Zhang B, Hang W and Huang B 2014 Spectrochim. Acta B:At. Spectrosc. 97 13
[46] Zhou W, Li K, Li X, Qian H, Shao J, Fang X, Xie P and Liu W 2011 Opt. Lett. 36 2961
[47] Dong L, Qi Y, Zengchao Z and Li Y 2008 Plasma Sources Sci. T. 17 015015
[1] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[2] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[3] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[4] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[5] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[6] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[7] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[8] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[9] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[10] Transmembrane transport of multicomponent liposome-nanoparticles into giant vesicles
Hui-Fang Wang(王慧芳), Chun-Rong Li(李春蓉), Min-Na Sun(孙敏娜), Jun-Xing Pan(潘俊星), and Jin-Jun Zhang(张进军). Chin. Phys. B, 2022, 31(4): 048703.
[11] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
[12] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[13] Effects of pulse energy ratios on plasma characteristics of dual-pulse fiber-optic laser-induced breakdown spectroscopy
Yu-Hua Hang(杭玉桦), Yan Qiu(邱岩), Ying Zhou(周颖), Tao Liu(刘韬), Bin Zhu(朱斌), Kaixing Liao(廖开星), Ming-Xin Shi(时铭鑫), and Fei Xue(薛飞). Chin. Phys. B, 2022, 31(2): 024212.
[14] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
[15] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
No Suggested Reading articles found!