Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 084703    DOI: 10.1088/1674-1056/ac4236
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis

Fazal Haq1,†, Muhammad Ijaz Khan2,3, Sami Ullah Khan4, Khadijah M Abualnaja5, and M A El-Shorbagy6,7
1 Department of Mathematics, Karakoram International University Main Campus, Gilgit 15100, Pakistan;
2 Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan;
3 Department of Mechanics and Engineering Science, Peking University, Beijing 100871, China;
4 Department of Mathematics, COMSATS University Islamabad, Sahiwal 57000, Pakistan;
5 Department of Mathematics and Statistics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia;
6 Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
7 Department of Basic Engineering Science, Faculty of Engineering, Menoufia University, Shebin El-Kom 32511, Egypt
Abstract  This research presents the applications of entropy generation phenomenon in incompressible flow of Jeffrey nanofluid in the presence of distinct thermal features. The novel aspects of various features, such as Joule heating, porous medium, dissipation features, and radiative mechanism are addressed. In order to improve thermal transportation systems based on nanomaterials, convective boundary conditions are introduced. The thermal viscoelastic nanofluid model is expressed in terms of differential equations. The problem is presented via nonlinear differential equations for which analytical expressions are obtained by using the homotopy analysis method (HAM). The accuracy of solution is ensured. The effective outcomes of all physical parameters associated with the flow model are carefully examined and underlined through various curves. The observations summarized from current analysis reveal that the presence of a permeability parameter offers resistance to the flow. A monotonic decrement in local Nusselt number is noted with Hartmann number and Prandtl number. Moreover, entropy generation and Bejan number increases with radiation parameter and fluid parameter.
Keywords:  Jeffrey nonmaterial      entropy generation      magnetohydrodynamics (MHD)      Bejan number      porous medium      Brownian motion  
Received:  11 October 2021      Revised:  05 December 2021      Accepted manuscript online:  11 December 2021
PACS:  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
  47.65.Gx (Electrorheological fluids)  
  96.12.St (Heat flow)  
  91.35.Dc (Heat flow; geothermy)  
Fund: This research was supported by Taif University Researchers Supporting Project (Grant No. TURSP-2020/217), Taif University, Taif, Saudi Arabia.
Corresponding Authors:  Fazal Haq     E-mail:  fazal.haq@kiu.edu.pk

Cite this article: 

Fazal Haq, Muhammad Ijaz Khan, Sami Ullah Khan, Khadijah M Abualnaja, and M A El-Shorbagy Physical aspects of magnetized Jeffrey nanomaterial flow with irreversibility analysis 2022 Chin. Phys. B 31 084703

[1] Jeffery G B 1915 The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science 29 455
[2] Hayat T, Awais M and Obaidat S 2012 Commun. Nonlinear Sci. Num. Simul. 17 699
[3] Qasim 2013 Alexandria Engineering Journal 52 571
[4] Reddy G B, Sreenadh S, Reddy R H and Kavitha A 2015 Ain Shams Engineering Journal 6 355
[5] Nallapu S and Radhakrishnamacharya G 2015 Procedia Engineering 127 185
[6] Waqas M, Shehzad S A, Hayat T, Khan M I and Alsaedi A 2019 J. Phys. Chem. Solids 133 45
[7] Yasmeen S, Asghar S, Anjum H J and Ehsan T 2019 Commun. Nonlinear Sci. Num. Simul. 76 51
[8] Chakraborty T, Das K and Kundu P K 2017 Journal of Molecular Liquids 229 443
[9] Gul A, Khan I and Makhanov S S 2018 Results in Physics 9 947
[10] Hasona W M, El-Shekhipy A A and Ibrahim M G 2018 Int. J. Heat Mass Transfer 126 700
[11] Hayat T, Asad S, Mustafa T and Alsaedi A 2015 Computers and Fluids 108 179
[12] Hwang Y, Park H S, Lee J K and Jung W H 2006 Current Applied Physics 6 e67
[13] Murshed S M S, Leong K C and Yang C 2008 Int. J. Thermal Sci. 47 560
[14] Qayyum S, Khan M I, Hayat T, Alsaedi A and Tamoor M 2018 Int. J. Heat Mass Transfer 127 933
[15] Khan M I, Hayat T, Khan M I and Alsaedi A 2008 Int. Commun. Heat Mass Transfer 91 216
[16] Alsaedi A, Khan M I, Farooq M, Gull N and Hayat T 2017 Adv. Powder Technol. 28 288
[17] Kumar A and Subudhi S 2019 Appl. Thermal Eng. 160 114092
[18] Yldz C, Arc M and Karabay H 2019 Int. J. Heat Mass Transfer 140 598
[19] Assael M J, Antoniadis K D, Wakeham W A and Zhang X 2019 Int. J. Heat Mass Transfer 138 597
[20] Sheikholeslami M, Hayat T and Alsaedi A 2017 Int. J. Heat Mass Transfer 115 981
[21] Sheikholeslami M, Hayat T and Alsaedi A 2018 J. Mol. Liquids 249 941
[22] Tong Y, Lee H, Kang W and Cho H 2019 Appl. Thermal Eng. 159 113959
[23] Turkyilmazoglu M 2019 Eur. J. Mech.-B Fluids 76 1
[24] Nadeem S, Haq R U, Akbar N S and Khan Z H 2013 Alexandria Engineering J. 52 577
[25] Xu H and Xing Z 2017 Int. Commun. Heat Mass Transfer 89 73
[26] Hayat T, Abbas Z, Pop I and Asghar S 2010 Int. J. Heat Mass Transfer 53 466
[27] Mandal I C and Mukhopadhyay S 2013 Ain Shams Engineering J. 4 103
[28] Bhatti M M, Shahid A and Rashidi M M 2016 Alexandria Engineering J. 55 51
[29] Xu H, Xing Z and Vafai K 2019 Int. J. Heat Fluid Flow 77 242
[30] Xing Z B, Han X, Ke H, Zhang Q G, Zhang Z and Xu H F 2021 Int. J. Num. Methods Heat Fluid Flow 31 2754
[31] Khan M I, Hayat T and Alsaedi A 2017 Results in Physics 7 2644
[32] Xu H, Gong L, Huang S and Xu M 2015 Int. J. Heat Mass Transfer 83 399
[33] Xu H, Xing Z B, Wang F Q and Cheng Z M 2019 Chem. Eng. Sci. 195 462
[34] Poulikakos D and Bejan A 1982 J. Heat Transfer 104 616
[35] Bejan A 1996 Revue Générale de Thermique 35 637
[36] Wang Y, Chen Z and Ling X 2015 Int. J. Heat Mass Transfer 90 499
[37] Jafarmadar S, Azizinia N, Razmara N and Mobadersani F 2016 Appl. Thermal Eng. 103 356
[38] Khan M I, Kumar A, Hayat T, Waqas M and Singh R 2019 J. Mol. Liquids 278 677
[39] Hayat T, Sajjad L, Khan M I, Khan M I and Alsaedi A 2019 J. Mol. Liquids 282 557
[40] Seyyedi S M, Dogonchi A S, Hashemi-Tilehnoee M, Asghar Z, Waqas M and Ganji D 2019 J. Mol. Liquids 287 110863
[41] Khan W A, Khan M I, Hayat T and Alsaedi A 2018 Physica B 534 113
[42] Bahmanyar M E and Talebi S 2019 Ann. Nucl. Energy 125 212
[43] Hayat T, Khan M I, Qayyum S, Alsaedi A and Khan M I 2018 Phys. Lett. A 382 749
[44] Huang Q, Tang A, Cai T, Zhao D and Zhou C 2019 Chem. Eng. Proc.- Process Intensification 143 107601
[45] Khan M I, Qayyum S, Hayat T, Khan M I, Alsaedi A and Khan T A 2018 Phys. Lett. A 382 2017
[46] Khan M I, Shah F, Hayat T and Alsaedi A 2019 Physica A 527 121154
[47] Lou C and Zhang Z 2019 J. Quantitative Spectroscopy and Radiative Transfer 232 27
[48] Hayat T, Khan S A, Khan M I and Alsaedi A 2019 Computer Methods and Programs in Biomedicine 177 57
[49] Liu M, Li S, Wu Z, Zhang K, Wang S and Liang X 2019 Eur. J. Mech. B:Fluids 77 87
[50] Khan M I, Alsaedi A, Hayat T and Khan N B 2019 Computer Methods and Programs in Biomedicine 179 104973
[51] Liao S and Sherif S A 2004 Appl. Mech. Rev. 57 25
[52] Turkyilmazoglu M 2013 Int. J. Mech. Sci. 77 263
[1] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[2] Ratchet transport of self-propelled chimeras in an asymmetric periodic structure
Wei-Jing Zhu(朱薇静) and Bao-Quan Ai(艾保全). Chin. Phys. B, 2022, 31(4): 040503.
[3] Erratum to “Simultaneous effects of magnetic field and space porosity on compressible Maxwell fluid transport induced by a surface acoustic wave in a microchannel”
Khaled S. Mekheimer, Soliman R. Komy, and Sara I. Abdelsalam. Chin. Phys. B, 2021, 30(9): 099901.
[4] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[5] Exact solutions of stochastic fractional Korteweg de-Vries equation with conformable derivatives
Hossam A. Ghany, Abd-Allah Hyder, M Zakarya. Chin. Phys. B, 2020, 29(3): 030203.
[6] Preliminary investigation on electrothermal instabilities in early phases of cylindrical foil implosions on primary test stand facility
Guanqiong Wang(王冠琼), Delong Xiao(肖德龙), Jiakun Dan(但家坤), Yang Zhang(张扬), Ning Ding(丁宁), Xianbin Huang(黄显宾), Xiaoguang Wang(王小光), Shunkai Sun(孙顺凯), Chuang Xue(薛创), Xiaojian Shu(束小建). Chin. Phys. B, 2019, 28(2): 025203.
[7] Transport of velocity alignment particles in random obstacles
Wei-jing Zhu(朱薇静), Xiao-qun Huang(黄小群), Bao-quan Ai(艾保全). Chin. Phys. B, 2018, 27(8): 080504.
[8] Current transport and mass separation for an asymmetric fluctuation system with correlated noises
Jie Wang(王杰), Li-Juan Ning(宁丽娟). Chin. Phys. B, 2018, 27(1): 010501.
[9] Anisotropic transport of microalgae Chlorella vulgaris in microfluidic channel
Nur Izzati Ishak, S V Muniandy, Vengadesh Periasamy, Fong-Lee Ng, Siew-Moi Phang. Chin. Phys. B, 2017, 26(8): 088203.
[10] An image encryption scheme based on three-dimensional Brownian motion and chaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2017, 26(2): 020504.
[11] Role of entropy generation minimization in thermal optimization
Xue-Tao Cheng(程雪涛), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2017, 26(12): 120505.
[12] Current and efficiency optimization under oscillating forces in entropic barriers
Ferhat Nutku, Ekrem Aydiner. Chin. Phys. B, 2016, 25(9): 090501.
[13] Analyses of an air conditioning system with entropy generation minimization and entransy theory
Yan-Qiu Wu(吴艳秋), Li Cai(蔡黎), Hong-Juan Wu(吴鸿娟). Chin. Phys. B, 2016, 25(6): 060507.
[14] Output power analyses of an endoreversible Carnot heat engine with irreversible heat transfer processes based on generalized heat transfer law
Wu Yan-Qiu (吴艳秋). Chin. Phys. B, 2015, 24(7): 070506.
[15] Optimization of combined endoreversible Carnot heat engines with different objectives
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2015, 24(6): 060510.
No Suggested Reading articles found!