INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Machine learning potential aided structure search for low-lying candidates of Au clusters |
Tonghe Ying(应通和)1,2, Jianbao Zhu(朱健保)1,2,†, and Wenguang Zhu(朱文光)1,2 |
1 Department of Physics, University of Science and Technology of China, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei 230026, China; 2 International Center for Quantum Design of Functional Materials(ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract A machine learning (ML) potential for Au clusters is developed through training on a dataset including several different sized clusters. This ML potential accurately covers the whole configuration space of Au clusters in a broad size range, thus expressing a good performance in search of their global minimum energy structures. Based on our potential, the low-lying structures of 17 different sized Au clusters are identified, which shows that small sized Au clusters tend to form planar structures while large ones are more likely to be stereo, revealing the critical size for the two-dimensional (2D) to three-dimensional (3D) structural transition. Our calculations demonstrate that ML is indeed powerful in describing the interaction of Au atoms and provides a new paradigm on accelerating the search of structures.
|
Received: 23 December 2021
Revised: 04 March 2022
Accepted manuscript online: 10 March 2022
|
PACS:
|
84.35.+i
|
(Neural networks)
|
|
34.20.Cf
|
(Interatomic potentials and forces)
|
|
36.40.-c
|
(Atomic and molecular clusters)
|
|
73.61.At
|
(Metal and metallic alloys)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004). |
Corresponding Authors:
Jianbao Zhu
E-mail: jianbzhu@ustc.edu.cn
|
Cite this article:
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光) Machine learning potential aided structure search for low-lying candidates of Au clusters 2022 Chin. Phys. B 31 078402
|
[1] Zhai H and Alexandrova A N 2018 J. Phys. Chem. Lett. 9 1696 [2] Flikkema E and Bromley S T 2004 J. Phys. Chem 108 9638 [3] Vilhelmsen L B and Hammer B 2014 J. Chem. Phys. 141 044711 [4] Wales D J and Doye J P 1997 J. Phys. Chem. A 101 5111 [5] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116 [6] Pickard C J and Needs R 2011 J. Phys.:Condens. Matter 23 053201 [7] Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J and Aktulga H M 2016 npj Comput. Mater. 2 1 [8] Wellendorff J, Lundgaard K T, Mogelhoj A, Petzold V, Landis D D, Norskov J K, Bligaard T and Jacobsen K W 2012 Phys. Rev. B 85 235149 [9] Torres J A G, Jennings P C, Hansen M H, Boes J R and Bligaard T 2019 Phys. Rev. Lett. 122 156001 [10] Himanen L, Geurts A, Foster A S and Rinke P 2019 Adv. Sci. 6 1900808 [11] Deringer V L and Csányi G 2017 Phys. Rev. B 95 094203 [12] del Río E G, Mortensen J J and Jacobsen K W 2019 Phys. Rev. B 100 104103 [13] Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T and Müller K R 2017 Sci. Adv. 3 e1603015 [14] Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A 2018 Nature 559 547 [15] Liu Y, Guo B, Zou X, Li Y and Shi S 2020 Energy Stor. Mater. 31 434 [16] Liu Y, Zhao T, Ju W and Shi S 2017 J. Materiomics 3 159 [17] Zhang L, Lin D Y, Wang H, Car R and Weinan E 2019 Phys. Rev. Mater. 3 023804 [18] Handley C M and Popelier P L 2010 J. Phys. Chem. A 114 3371 [19] Botu V, Batra R, Chapman J and Ramprasad R 2017 J. Phys. Chem. C 121 511 [20] Behler J 2016 J. Chem. Phys. 145 170901 [21] Unke O T and Meuwly M 2019 J. Chem. Theory Comput. 15 3678 [22] Jiang B and Guo H 2013 J. Chem. Phys. 139 054112 [23] Behler J, Lorenz S and Reuter K 2007 J. Chem. Phys. 127 07 [24] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403 [25] Zubatyuk R, Smith J S, Leszczynski J and Isayev O 2019 Sci. Adv. 5 eaav6490 [26] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301 [27] Lubbers N, Smith J S and Barros K 2018 J. Chem. Phys. 148 241715 [28] Kearnes S, McCloskey K, Berndl M, Pande V and Riley P 2016 J. Comput. Aided 30 595 [29] Chen C, Ye W, Zuo Y, Zheng C and Ong S P 2019 Chem. Mater. 31 3564 [30] Lorenz S, Groß A and Scheffler M 2004 Chem. Phys. Lett. 395 210 [31] Pyykkö P 2004 Angew. Chem. Int. Ed. 43 4412 [32] Mirkin C A, Letsinger R L, Mucic R C and Storhoff J J 1996 Nature 382 607 [33] Chen S, Ingram R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G, Khoury J T, Alvarez M M and Whetten R L 1998 Science 280 2098 [34] Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P and Schultz P G 1996 Nature 382 609 [35] Li J, Li X, Zhai H J and Wang L S 2003 Science 299 864 [36] Boyen H G, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz J P, Riethmüller S, Hartmann C and Möller M 2002 Science 297 1533 [37] Yin W J, Gu X and Gong X G 2008 Solid State Commun. 147 323 [38] Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A and Müller K R 2018 J. Chem. Phys. 148 241722 [39] Yamashita T, Sato N, Kino H, Miyake T, Tsuda K and Oguchi T 2018 Phys. Rev. Mater. 2 013803 [40] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401 [41] Kingma D P and Ba J 2014 arXiv:1412.6980 [42] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251 [43] Blöchl P E 1994 Phys. Rev. B 50 17953 [44] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [45] Hobbs D, Kresse G and Hafner J 2000 Phys. Rev. B 62 11556 [46] Xiao L and Wang L 2004 Chem. Phys. Lett. 392 452 [47] Nhat P V, Si N T, Leszczynski J and Nguyen M T 2017 Chem. Phys. 493 140 [48] github website for data and code, https://github.com/TongheYing/ML-Au |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|