Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 078402    DOI: 10.1088/1674-1056/ac5c3d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Machine learning potential aided structure search for low-lying candidates of Au clusters

Tonghe Ying(应通和)1,2, Jianbao Zhu(朱健保)1,2,†, and Wenguang Zhu(朱文光)1,2
1 Department of Physics, University of Science and Technology of China, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei 230026, China;
2 International Center for Quantum Design of Functional Materials(ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  A machine learning (ML) potential for Au clusters is developed through training on a dataset including several different sized clusters. This ML potential accurately covers the whole configuration space of Au clusters in a broad size range, thus expressing a good performance in search of their global minimum energy structures. Based on our potential, the low-lying structures of 17 different sized Au clusters are identified, which shows that small sized Au clusters tend to form planar structures while large ones are more likely to be stereo, revealing the critical size for the two-dimensional (2D) to three-dimensional (3D) structural transition. Our calculations demonstrate that ML is indeed powerful in describing the interaction of Au atoms and provides a new paradigm on accelerating the search of structures.
Keywords:  machine learning potential      gold cluster      first-principles calculation  
Received:  23 December 2021      Revised:  04 March 2022      Accepted manuscript online:  10 March 2022
PACS:  84.35.+i (Neural networks)  
  34.20.Cf (Interatomic potentials and forces)  
  36.40.-c (Atomic and molecular clusters)  
  73.61.At (Metal and metallic alloys)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004).
Corresponding Authors:  Jianbao Zhu     E-mail:  jianbzhu@ustc.edu.cn

Cite this article: 

Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光) Machine learning potential aided structure search for low-lying candidates of Au clusters 2022 Chin. Phys. B 31 078402

[1] Zhai H and Alexandrova A N 2018 J. Phys. Chem. Lett. 9 1696
[2] Flikkema E and Bromley S T 2004 J. Phys. Chem 108 9638
[3] Vilhelmsen L B and Hammer B 2014 J. Chem. Phys. 141 044711
[4] Wales D J and Doye J P 1997 J. Phys. Chem. A 101 5111
[5] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[6] Pickard C J and Needs R 2011 J. Phys.:Condens. Matter 23 053201
[7] Senftle T P, Hong S, Islam M M, Kylasa S B, Zheng Y, Shin Y K, Junkermeier C, Engel-Herbert R, Janik M J and Aktulga H M 2016 npj Comput. Mater. 2 1
[8] Wellendorff J, Lundgaard K T, Mogelhoj A, Petzold V, Landis D D, Norskov J K, Bligaard T and Jacobsen K W 2012 Phys. Rev. B 85 235149
[9] Torres J A G, Jennings P C, Hansen M H, Boes J R and Bligaard T 2019 Phys. Rev. Lett. 122 156001
[10] Himanen L, Geurts A, Foster A S and Rinke P 2019 Adv. Sci. 6 1900808
[11] Deringer V L and Csányi G 2017 Phys. Rev. B 95 094203
[12] del Río E G, Mortensen J J and Jacobsen K W 2019 Phys. Rev. B 100 104103
[13] Chmiela S, Tkatchenko A, Sauceda H E, Poltavsky I, Schütt K T and Müller K R 2017 Sci. Adv. 3 e1603015
[14] Butler K T, Davies D W, Cartwright H, Isayev O and Walsh A 2018 Nature 559 547
[15] Liu Y, Guo B, Zou X, Li Y and Shi S 2020 Energy Stor. Mater. 31 434
[16] Liu Y, Zhao T, Ju W and Shi S 2017 J. Materiomics 3 159
[17] Zhang L, Lin D Y, Wang H, Car R and Weinan E 2019 Phys. Rev. Mater. 3 023804
[18] Handley C M and Popelier P L 2010 J. Phys. Chem. A 114 3371
[19] Botu V, Batra R, Chapman J and Ramprasad R 2017 J. Phys. Chem. C 121 511
[20] Behler J 2016 J. Chem. Phys. 145 170901
[21] Unke O T and Meuwly M 2019 J. Chem. Theory Comput. 15 3678
[22] Jiang B and Guo H 2013 J. Chem. Phys. 139 054112
[23] Behler J, Lorenz S and Reuter K 2007 J. Chem. Phys. 127 07
[24] Bartók A P, Payne M C, Kondor R and Csányi G 2010 Phys. Rev. Lett. 104 136403
[25] Zubatyuk R, Smith J S, Leszczynski J and Isayev O 2019 Sci. Adv. 5 eaav6490
[26] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301
[27] Lubbers N, Smith J S and Barros K 2018 J. Chem. Phys. 148 241715
[28] Kearnes S, McCloskey K, Berndl M, Pande V and Riley P 2016 J. Comput. Aided 30 595
[29] Chen C, Ye W, Zuo Y, Zheng C and Ong S P 2019 Chem. Mater. 31 3564
[30] Lorenz S, Groß A and Scheffler M 2004 Chem. Phys. Lett. 395 210
[31] Pyykkö P 2004 Angew. Chem. Int. Ed. 43 4412
[32] Mirkin C A, Letsinger R L, Mucic R C and Storhoff J J 1996 Nature 382 607
[33] Chen S, Ingram R S, Hostetler M J, Pietron J J, Murray R W, Schaaff T G, Khoury J T, Alvarez M M and Whetten R L 1998 Science 280 2098
[34] Alivisatos A P, Johnsson K P, Peng X, Wilson T E, Loweth C J, Bruchez M P and Schultz P G 1996 Nature 382 609
[35] Li J, Li X, Zhai H J and Wang L S 2003 Science 299 864
[36] Boyen H G, Kästle G, Weigl F, Koslowski B, Dietrich C, Ziemann P, Spatz J P, Riethmüller S, Hartmann C and Möller M 2002 Science 297 1533
[37] Yin W J, Gu X and Gong X G 2008 Solid State Commun. 147 323
[38] Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A and Müller K R 2018 J. Chem. Phys. 148 241722
[39] Yamashita T, Sato N, Kino H, Miyake T, Tsuda K and Oguchi T 2018 Phys. Rev. Mater. 2 013803
[40] Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401
[41] Kingma D P and Ba J 2014 arXiv:1412.6980
[42] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[43] Blöchl P E 1994 Phys. Rev. B 50 17953
[44] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[45] Hobbs D, Kresse G and Hafner J 2000 Phys. Rev. B 62 11556
[46] Xiao L and Wang L 2004 Chem. Phys. Lett. 392 452
[47] Nhat P V, Si N T, Leszczynski J and Nguyen M T 2017 Chem. Phys. 493 140
[48] github website for data and code, https://github.com/TongheYing/ML-Au
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[9] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] High-temperature nodal ring semimetal in two-dimensional honeycomb-kagome Mn2N3 lattice
Xin-Ke Liu(刘鑫柯), Xin-Yang Li(李欣阳), Miao-Juan Ren(任妙娟),Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127203.
No Suggested Reading articles found!