CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Chiral splitting of Kondo peak in triangular triple quantum dot |
Yi-Ming Liu(刘一铭)1, Yuan-Dong Wang(王援东)2, and Jian-Hua Wei(魏建华)1,† |
1 Department of Physics, Renmin University of China, Beijing 100872, China; 2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract New characteristics of the Kondo effect, arising from spin chirality induced by the Berry phase in the equilibrium state, are investigated. The analysis is based on the hierarchical equations of motion (HEOM) approach in a triangular triple quantum-dot (TTQD) structure. In the absence of magnetic field, TTQD has four-fold degenerate chiral ground states with degenerate spin chirality. When a perpendicular magnetic field is applied, the chiral interaction is induced by the magnetic flux threading through TTQD and the four-fold degenerate states split into two chiral state pairs. The chiral excited states manifest as chiral splitting of the Kondo peak in the spectral function. The theoretical analysis is confirmed by the numerical computations. Furthermore, under a Zeeman magnetic field B, the chiral Kondo peak splits into four peaks, owing to the splitting of spin freedom. The influence of spin chirality on the Kondo effect signifies an important role of the phase factor. This work provides insight into the quantum transport of strongly correlated electronic systems.
|
Received: 08 July 2021
Revised: 02 September 2021
Accepted manuscript online:
|
PACS:
|
72.15.Qm
|
(Scattering mechanisms and Kondo effect)
|
|
73.21.La
|
(Quantum dots)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11774418,11374363,and 21373191). |
Corresponding Authors:
Jian-Hua Wei,E-mail:wjh@ruc.edu.cn
E-mail: wjh@ruc.edu.cn
|
About author: 2021-9-24 |
Cite this article:
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华) Chiral splitting of Kondo peak in triangular triple quantum dot 2022 Chin. Phys. B 31 057201
|
[1] Berry M V 1984 Proc. R. Soc. Lond. A 392 45 [2] Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science 291 2573 [3] Ohgushi K, Murakami S and Nagaosa N 2000 Phys. Rev. B 62 R6065 [4] Wen X G, Zee A and Wilczek F 1989 Phys. Rev. B 39 11413 [5] Lee P A and Nagaosa N 1992 Phys. Rev. B 46 5621 [6] Yang K, Warman L K and Girvin S M 1993 Phys. Rev. Lett. 70 2641 [7] Kondo J 1964 Prog. Theor. Phys. 32 37 [8] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) [9] Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U and Kastner M A 1998 Nature 391 156 [10] Liang W J, Shores M P, Bockrath M, Long J R and Park H 2002 Nature 417 725 [11] Nygard J, Cobden D H and Lindelof P E 2000 Nature 408 342 [12] Costi T A 2000 Phys. Rev. Lett. 85 1504 [13] Kuzmenko T, Kikoin K and Avishai Y 2006 Phy. Rev. Lett. 96 046601 [14] Delgado F, Shim Y P, Korkusinski M and Hawrylak P 2007 Phy. Rev. B 76 115332 [15] Numata T, Nisikawa Y, Oguri A and Hewson A C 2009 Phy. Rev. B 80 155330 [16] Oguri A, Amaha S, Nishikawa Y, Numata T, Shimamoto M, Hewson A C and Tarucha S 2011 Phy. Rev. B 83 205304 [17] Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124 [18] Mitchell A K, Jarrold T F, Galpin M R and Logan D E 2013 J. Phys. Chem. B 117 12777 [19] Kim C I, Kang C J, Choe M I, Yun C S and Ahn J K 2019 Solid State Commun. 289 12 [20] Ingersent K, Ludwig A W W and Affleck I 2005 Phys. Rev. Lett. 95 257204 [21] Žitko R and Bonča J 2008 Phys. Rev. B 77 245112 [22] Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126 [23] Tooski S B, Ramšak A and Bulka B R 2016 Physica E 75 345 [24] Vernek E, Büsser C A, Martins G B, Anda E V, Sandler N and Ulloa S E 2009 Phys. Rev. B 80 035119 [25] Koga M, Matsumoto M and Kusunose H 2012 J. Phys. Soc. Jpn. 81 123703 [26] Tooski S B, Bulka B R, Žitko R and Ramšak A 2014 Eur. Phys. J. B 87 145 [27] Yoo G, Park J, Lee S S B and Sim H S 2014 Phys. Rev. Lett. 113 236601 [28] Koga M, Matsumoto M and Kusunose H 2016 J. Phys. Soc. Jpn. 85 063702 [29] Scarola V W, Park K and Sarma S D 2004 Phys. Rev. Lett. 93 120503 [30] Hsieh C Y, Rene A and Hawrylak P 2012 Phys. Rev. B 86 115312 [31] Ye J, Kim Y B, Millis A J, Shraiman B I, Majumdar P and Tešanović Z 1999 Phys. Rev. Lett. 83 3737 [32] Wang Y D, Zhu Z G, Wei J H and Yan Y J 2020 Europhy. Lett. 130 17003 [33] Li Z H, Cheng Y X, Wei J H, Zheng X and Yan Y J 2018 Phys. Rev. B 98 115133 [34] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485 [35] Hsieh C Y, Rene A and Hawrylak P 2012 Phys. Rev. B 86 115312 [36] Jakub L and Bogdan R B 2014 Phys. Rev. B 90 165427 [37] Jarillo-Herrero H P, Kong J, van der Zant H S J, Dekker C, Kouwenhoven L P and Franceschi S D 2005 Nature 434 484 [38] Choi M S, López R and Aguado R 2005 Phys. Rev. Lett. 95 067204 [39] Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J and Yan Y J 2012 Phys. Rev. Lett. 109 266403 [40] Ye L Z, Wang X L, Hou D, Xu R X, Zheng X and Yan Y J 2016 Wiley Interdisciplinary Reviews. Computational Molecular Science 6 608 [41] Feynman R P and Vernon F L 2000 Annals of Physics 281 547 [42] Jin J S, Zheng X and Yan Y J 2008 J. Chem. Phys. 128 234703 [43] Yan Y J 2014 J. Chem. Phys. 140 054105 [44] Yan Y J, Jin J S, Xu R X and Zheng X 2016 Front. Phys. 11 110306 [45] Cheng Y X, Wei J and Yan Y J 2015 Europhy. Lett 112 57001 [46] Cheng Y X, Wang Y D, Wei J H, Zhu Z G and Yan Y J 2017 Phys. Rev. B 95 155417 [47] Wang Y D, Ni J H and Wei J H 2017 Phys. Rev. B 96 245426 [48] Cheng Y X, Wang Y D, Wei J H, Luo H G and Lin H Q 2019 J. Phys.: Condens. Matter 31 155302 [49] Scarola V W and Sarma S D 2005 Phys. Rev. A 71 032340 [50] Härtle R, Cohen G, Reichman D R and Millis A J 2013 Phys. Rev. B 88 235426 [51] Härtle R and Millis A J 2013 Phys. Rev. B 90 245426 [52] Okamoto J i, Mathey L and Härtle R 2016 Phys. Rev. B 94 235411 [53] Ye L Z, Hou D, Wang R L, Cao D W, Zheng X and Yan Y J 2014 Phys. Rev. B 90 165116 [54] Cheng Y X, Hou W J, Wang Y D, Li Z H, Wei J H and Yan Y J 2015 New J. Phys. 17033009 [55] Pan L, Wang Y D, Li Z H, Wei J H and Yan Y J 2016 J. Phys.: Condens. Matter 29 025601 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|