Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 057201    DOI: 10.1088/1674-1056/ac29a5

Chiral splitting of Kondo peak in triangular triple quantum dot

Yi-Ming Liu(刘一铭)1, Yuan-Dong Wang(王援东)2, and Jian-Hua Wei(魏建华)1,†
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  New characteristics of the Kondo effect, arising from spin chirality induced by the Berry phase in the equilibrium state, are investigated. The analysis is based on the hierarchical equations of motion (HEOM) approach in a triangular triple quantum-dot (TTQD) structure. In the absence of magnetic field, TTQD has four-fold degenerate chiral ground states with degenerate spin chirality. When a perpendicular magnetic field is applied, the chiral interaction is induced by the magnetic flux threading through TTQD and the four-fold degenerate states split into two chiral state pairs. The chiral excited states manifest as chiral splitting of the Kondo peak in the spectral function. The theoretical analysis is confirmed by the numerical computations. Furthermore, under a Zeeman magnetic field B, the chiral Kondo peak splits into four peaks, owing to the splitting of spin freedom. The influence of spin chirality on the Kondo effect signifies an important role of the phase factor. This work provides insight into the quantum transport of strongly correlated electronic systems.
Keywords:  Kondo effect      quantum dot      chiral splitting  
Received:  08 July 2021      Revised:  02 September 2021      Accepted manuscript online: 
PACS:  72.15.Qm (Scattering mechanisms and Kondo effect)  
  73.21.La (Quantum dots)  
  73.23.-b (Electronic transport in mesoscopic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11774418,11374363,and 21373191).
Corresponding Authors:  Jian-Hua Wei,     E-mail:
About author:  2021-9-24

Cite this article: 

Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华) Chiral splitting of Kondo peak in triangular triple quantum dot 2022 Chin. Phys. B 31 057201

[1] Berry M V 1984 Proc. R. Soc. Lond. A 392 45
[2] Taguchi Y, Oohara Y, Yoshizawa H, Nagaosa N and Tokura Y 2001 Science 291 2573
[3] Ohgushi K, Murakami S and Nagaosa N 2000 Phys. Rev. B 62 R6065
[4] Wen X G, Zee A and Wilczek F 1989 Phys. Rev. B 39 11413
[5] Lee P A and Nagaosa N 1992 Phys. Rev. B 46 5621
[6] Yang K, Warman L K and Girvin S M 1993 Phys. Rev. Lett. 70 2641
[7] Kondo J 1964 Prog. Theor. Phys. 32 37
[8] Hewson A C 1993 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press)
[9] Goldhaber-Gordon D, Shtrikman H, Mahalu D, Abusch-Magder D, Meirav U and Kastner M A 1998 Nature 391 156
[10] Liang W J, Shores M P, Bockrath M, Long J R and Park H 2002 Nature 417 725
[11] Nygard J, Cobden D H and Lindelof P E 2000 Nature 408 342
[12] Costi T A 2000 Phys. Rev. Lett. 85 1504
[13] Kuzmenko T, Kikoin K and Avishai Y 2006 Phy. Rev. Lett. 96 046601
[14] Delgado F, Shim Y P, Korkusinski M and Hawrylak P 2007 Phy. Rev. B 76 115332
[15] Numata T, Nisikawa Y, Oguri A and Hewson A C 2009 Phy. Rev. B 80 155330
[16] Oguri A, Amaha S, Nishikawa Y, Numata T, Shimamoto M, Hewson A C and Tarucha S 2011 Phy. Rev. B 83 205304
[17] Mitchell A K, Jarrold T F and Logan D E 2009 Phys. Rev. B 79 085124
[18] Mitchell A K, Jarrold T F, Galpin M R and Logan D E 2013 J. Phys. Chem. B 117 12777
[19] Kim C I, Kang C J, Choe M I, Yun C S and Ahn J K 2019 Solid State Commun. 289 12
[20] Ingersent K, Ludwig A W W and Affleck I 2005 Phys. Rev. Lett. 95 257204
[21] Žitko R and Bonča J 2008 Phys. Rev. B 77 245112
[22] Mitchell A K and Logan D E 2010 Phys. Rev. B 81 075126
[23] Tooski S B, Ramšak A and Bulka B R 2016 Physica E 75 345
[24] Vernek E, Büsser C A, Martins G B, Anda E V, Sandler N and Ulloa S E 2009 Phys. Rev. B 80 035119
[25] Koga M, Matsumoto M and Kusunose H 2012 J. Phys. Soc. Jpn. 81 123703
[26] Tooski S B, Bulka B R, Žitko R and Ramšak A 2014 Eur. Phys. J. B 87 145
[27] Yoo G, Park J, Lee S S B and Sim H S 2014 Phys. Rev. Lett. 113 236601
[28] Koga M, Matsumoto M and Kusunose H 2016 J. Phys. Soc. Jpn. 85 063702
[29] Scarola V W, Park K and Sarma S D 2004 Phys. Rev. Lett. 93 120503
[30] Hsieh C Y, Rene A and Hawrylak P 2012 Phys. Rev. B 86 115312
[31] Ye J, Kim Y B, Millis A J, Shraiman B I, Majumdar P and Tešanović Z 1999 Phys. Rev. Lett. 83 3737
[32] Wang Y D, Zhu Z G, Wei J H and Yan Y J 2020 Europhy. Lett. 130 17003
[33] Li Z H, Cheng Y X, Wei J H, Zheng X and Yan Y J 2018 Phys. Rev. B 98 115133
[34] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[35] Hsieh C Y, Rene A and Hawrylak P 2012 Phys. Rev. B 86 115312
[36] Jakub L and Bogdan R B 2014 Phys. Rev. B 90 165427
[37] Jarillo-Herrero H P, Kong J, van der Zant H S J, Dekker C, Kouwenhoven L P and Franceschi S D 2005 Nature 434 484
[38] Choi M S, López R and Aguado R 2005 Phys. Rev. Lett. 95 067204
[39] Li Z H, Tong N H, Zheng X, Hou D, Wei J H, Hu J and Yan Y J 2012 Phys. Rev. Lett. 109 266403
[40] Ye L Z, Wang X L, Hou D, Xu R X, Zheng X and Yan Y J 2016 Wiley Interdisciplinary Reviews. Computational Molecular Science 6 608
[41] Feynman R P and Vernon F L 2000 Annals of Physics 281 547
[42] Jin J S, Zheng X and Yan Y J 2008 J. Chem. Phys. 128 234703
[43] Yan Y J 2014 J. Chem. Phys. 140 054105
[44] Yan Y J, Jin J S, Xu R X and Zheng X 2016 Front. Phys. 11 110306
[45] Cheng Y X, Wei J and Yan Y J 2015 Europhy. Lett 112 57001
[46] Cheng Y X, Wang Y D, Wei J H, Zhu Z G and Yan Y J 2017 Phys. Rev. B 95 155417
[47] Wang Y D, Ni J H and Wei J H 2017 Phys. Rev. B 96 245426
[48] Cheng Y X, Wang Y D, Wei J H, Luo H G and Lin H Q 2019 J. Phys.: Condens. Matter 31 155302
[49] Scarola V W and Sarma S D 2005 Phys. Rev. A 71 032340
[50] Härtle R, Cohen G, Reichman D R and Millis A J 2013 Phys. Rev. B 88 235426
[51] Härtle R and Millis A J 2013 Phys. Rev. B 90 245426
[52] Okamoto J i, Mathey L and Härtle R 2016 Phys. Rev. B 94 235411
[53] Ye L Z, Hou D, Wang R L, Cao D W, Zheng X and Yan Y J 2014 Phys. Rev. B 90 165116
[54] Cheng Y X, Hou W J, Wang Y D, Li Z H, Wei J H and Yan Y J 2015 New J. Phys. 17033009
[55] Pan L, Wang Y D, Li Z H, Wei J H and Yan Y J 2016 J. Phys.: Condens. Matter 29 025601
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!