CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs |
Wen-Chong Li(李文充)1, Ling-Xiao Zhao(赵凌霄)2, Hai-Jun Zhao(赵海军)1,†, Gen-Fu Chen(陈根富)2, and Zhi-Xiang Shi(施智祥)1,‡ |
1 School of Physics and Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 211189, China; 2 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Due to non-saturating magnetoresistance (MR) and the special compensation mechanism, the Weyl semimetal TaAs single crystal has attracted considerable attention in condensed matter physics. Herein, we use maximum entropy mobility spectrum analysis (MEMSA) to extract charge carrier information by fitting the experimentally measured longitudinal and transverse electric transport curves of TaAs. The carrier types and the number of bands are obtained without any hypothesis. Study of the temperature dependence shows details of carrier property evolution. Our quantitative results explain the non-saturated magnetoresistance and Hall sign change phenomena of TaAs.
|
Received: 18 July 2021
Revised: 15 September 2021
Accepted manuscript online:
|
PACS:
|
71.55.Ak
|
(Metals, semimetals, and alloys)
|
|
72.15.-v
|
(Electronic conduction in metals and alloys)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11674054,U1932217,and 11704067). |
Corresponding Authors:
Hai-Jun Zhao,E-mail:haijunzhao@seu.edu.cn;Zhi-Xiang Shi,E-mail:zxshi@seu.edu.cn
E-mail: haijunzhao@seu.edu.cn;zxshi@seu.edu.cn
|
About author: 2021-9-29 |
Cite this article:
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥) Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs 2022 Chin. Phys. B 31 057103
|
[1] Yan B and Felser C 2017 Annu. Rev. Condens. Matter Phys. 8 337 [2] Wang Z H, Yang L, Li X J, Zhao X T, Wang H L, Zhang Z D and Gao X P A 2014 Nano Lett. 14 6510 [3] Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898 [4] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405 [5] Tang P, Zhou Q, Xu G and Zhang S C 2016 Nat. Phys. 12 1100 [6] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 [7] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023 [8] Lee C C, Xu S Y, Huang S M, Sanchez D S, Belopolski I, Chang G, Bian G, Alidoust N, Zheng H, Neupane M, Wang B, Bansil A, Hasan M Z and Lin H 2015 Phys. Rev. B 92 235104 [9] Lv B Q, Muff S, Qian T, Song Z D, Nie S M, Xu N, Richard P, Matt C E, Plumb N C, Zhao L X, Chen G F, Fang Z, Dai X, Dil J H, Mesot J, Shi M, Weng H M and Ding H 2015 Phys. Rev. Lett. 115 217601 [10] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724 [11] Du J, Wang H, Chen Q, Mao Q, Khan R, Xu B, Zhou Y, Zhang Y, Yang J, Chen B, Feng C and Fang M 2016 Sci. China Phys. Mech. Astron. 59 657406 [12] McClure J W 1956 Phys. Rev. 101 1642 [13] McClure J W 1958 Phys. Rev. 112 715 [14] Beck W A and Anderson J R 1987 J. Appl. Phys. 62 541 [15] Rothman J, Meilhan J, Perrais G, Belle J P and Gravrand O 2006 J. Electron. Mater. 35 1174 [16] Kiatgamolchai S, Myronov M, Mironov O A, Kantser V G, Parker E H C and Whall T E 2002 Phys. Rev. E 66 036705 [17] Huynh K K, Tanabe Y, Urata T, Heguri S, Tanigaki K, Kida T and Hagiwara M 2014 New J. Phys. 16 093062 [18] Huynh K K, Tanabe Y, Urata T, Oguro H, Heguri S, Watanabe K and Tanigaki K 2014 Phys. Rev. B 90 144516 [19] Pei Q L, Luo X, Chen F C, Lv H Y, Sun Y, Lu W J, Tong P, Sheng Z G, Han Y Y, Song W H, Zhu X B and Sun Y P 2018 Appl. Phys. Lett. 112 072401 [20] Zhao H, Li W, Chen Y, Xu C, Li B, Luo W, Qian D and Shi Z 2021 Sci. Rep. 11 6249 [21] Kobayashi K and Brown F C 1959 Phys. Rev. 113 507 [22] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 [23] Tafti F F, Gibson Q D, Kushwaha S K, Haldolaarachchige N and Cava R J 2016 Nat. Phys. 12 272 [24] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280 [25] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351 [26] Blomqvist H and Noréus D 2002 J. Appl. Phys. 91 5141 [27] Obrzut J, Douglas J F, Kharchenko S B and Migler K B 2007 Phys. Rev. B 76 195420 [28] Ahadi K, Nemati A and Mahdavi S M 2012 Mater. Lett. 83 124 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|