Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康)1, Shengqiang Bai(柏胜强)3,4, Hee Seok Kim5,†, and Weishu Liu(刘玮书)1,2,‡
1 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; 2 Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China; 3 The State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China; 4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; 5 Mechanical Engineering, School of Engineering&Technology, University of Washington Tacoma, Tacoma, WA 98402, USA
Abstract Thermoelectric power generation provides us the unique capability to explore the deep space and holds promise for harvesting the waste heat and providing a battery-free power supply for IoTs. The past years have witnessed massive progress in thermoelectric materials, while the module-level development is still lagged behind. We would like to shine some light on the module-level design and characterization of thermoelectric power generators (TEGs). In the module-level design, we review material selection, thermal management, and the determination of structural parameters. We also look into the module-level characterization, with particular attention on the heat flux measurement. Finally, the challenge in the optimal design and reliable characterization of thermoelectric power generators is discussed, together with a calling to establish a standard test procedure.
Fund: The work is supported by Shenzhen DRC project (Grant No.[2018]1433).
Corresponding Authors:
Hee Seok Kim, Weishu Liu
E-mail: heeskim@uw.edu;liuws@sustech.edu.cn
Cite this article:
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书) Module-level design and characterization of thermoelectric power generator 2022 Chin. Phys. B 31 048502
[1] Zakrajsek J F, Woerner D F, Cairnsgallimore D, Johnson S G and Qualls L 2016 IEEE Aerospace Conference, March 05-12, 2016, Big Sky, MT, America, p. 1 [2] Salvador J R 2017 Technical Report, US Department of Energy 1414341 [3] Yang Y, Lin Z H, Hou T, Zhang F and Wang Z L 2012 Nano Research5 888 [4] Ioffe A F 1957 Semiconductor Thermolements and Thermoelectric Cooling (London:Infosearch Limited) pp. 38-40 [5] Borup K A, de Boor J, Wang H, Drymiotis F, Gascoin F, Shi X, Chen L D, Fedorov M I, Muller E, Iversen B B and Snyder G J 2015 Energy Environ. Sci. 8 423 [6] Lalonde A D, Pei Y Z and Snyder G J 2011 Energy Environ. Sci. 4 2090 [7] Wang H, Bai S Q, Chen L D, Cuenat A, Joshi G, Kleinke H, König J, Lee H W, Martin J, Oh M W, Porter W D, Ren Z F, Salvador J, Sharp J, Taylor P, Thompson A J and Tseng Y C 2015 Journal of Electronic Materials44 4482 [8] Chen Z W, Zhang X Y, Lin S Q, Chen L D and Pei Y Z 2018 National Science Review5 888 [9] Wei T R, Guan M J, Yu, J J, Zhu T J, Chen L D and Shi X 2018 Joule2 2183 [10] Ziabari A, Suhir E and Shakouri A 2014 Microelectronics Journal45 547 [11] Kraemer D, Jie Q, Mcenaney K, Feng C, Liu W, Weinstein L A, Loomis J, Ren Z F and Chen G 2016 Nat. Energy1 16153 [12] Liu W S, Lukas K C, McEnaney K, Lee S Y, Zhang Q, Opeil C P, Chen G and Ren Z F 2013 Energy Environ. Sci. 6 552 [13] Angrist S W 1982 Direct Energy Conversion (Boston:Allyn and Bacon Inc) p. 145 [14] Kim H S, Liu W S, Chen G, Chu C W and Ren Z F 2015 Proc. Natl. Acad. Sci. USA112 8205 [15] Kim H S, Liu W S and Ren Z F 2017 Energy Environ. Sci. 10 69 [16] Xing Y F, Liu R H, Liao J C, Wang C, Zhang Q H, Song Q F, Xia X G, Zhu T J, Bai S Q and Chen L D 2020 Joule4 1 [17] Landmann D, Tang Y L, Kunz B, Huber R, Widner D, Rickhaus P, Widmer R N, Elsener H R and Battaglia C 2019 J. Appl. Phys. 126 085113 [18] Zhu K, Deng B, Zhang P X, Kim H S, Jiang P and Liu W S 2020 Energy Environ. Sci. 13 3514 [19] Lv S, He W, Jiang Q, Hu Z, Liu X, Chen H and Liu M 2018 Energy Conversion and Management156 167 [20] Khalil A, Elhassnaoui A, Yadir S, Abdellatif O, Errami Y and Sahnoun S 2021 Energy224 119967 [21] Choo S, Ejaz F, Ju H, Kim F, Lee J, Yang S E, Kim G, Kim H, Jo S, Baek S, Cho S, Kim K, Kim J Y, Ahn S, Chae H G, Kwon B and Son J S 2021 Nat. Commun. 12 3550 [22] Kim C S, Yang H M, Lee J, Lee G S, Choi H, Kim Y J, Lim S H, Cho S H and Cho B J 2018 ACS Energy Lett. 3 501 [23] Crane D T and Bell L E 2006 25th International Conference on Thermoelectrics, August 06-10, 2006, Vienna, Austria, p. 11 [24] Kim H S, Kikuchi K, Itoh T, Iida T and Taya M 2014 Materials Science and Engineering B185 45 [25] Sakamoto T, Iida T, Ohno Y, Ishikawa M, Kogo Y, Hirayama N, Arai K, Nakamura T, Nishio K and Takanashi Y 2014 Journal of Electronic Materials43 1620 [26] Min G 2005 Thermoelectric Module Design Theories, in Thermoelectrics, Handbook:Macro to Nano (BocaRaton, FL:CRC Press) p. 11 [27] Maduabuchi C, Njoku H, Eke M, Mgbemene C, Lamba R and Ibrahim J S 2021 Journal of Power Sources500 229989 [28] He R, Schierning G and Nielsch K 2017 Advanced Materials Technologies3 1700256 [29] Ji D X, Hu S W, Feng Y, Qin J, Yin Z J, Romagnoli A, Zhao J H and Qian H H 2021 Energy Conversion and Management238 114158 [30] Guo M C, Zhu J B, Guo F K, Zhang Q, Cai W and Sui J H 2020 Materials Today Physics15 100270 [31] Suarez F, Nozariasbmarz A, Vashaee D and Mehmet C Öztürk 2016 Energy Environ. Sci. 9 2099 [32] Mayer P M and Ram R J 2006 Nanoscale and Microscale Thermophysical Engineering10 143 [33] Stevens J W 2001 Energy Conversion and Management42 709 [34] Yazawa K and Shakouri A 2011 Environ. Sci. Technol. 45 7548 [35] Yazawa K and Shakouri A 2012 J. Appl. Phys. 111 024509 [36] Apertet Y, Ouerdane H, Glavatskaya O, Goupil C and Lecoeur P 2012 Europhys. Lett. 972 28001 [37] Apertet Y, Ouerdane H, Goupil C and Lecoeur P 2014 J. Appl. Phys. 11614 144901 [38] Lu X, Zhao D L, Ma T, Wang Q W, Fan J T and Yang R G 2018 Energy Conversion and Management169 186 [39] Baranowski L L, Snyder G J and Toberer E S 2013 J. Appl. Phys. 113 204904 [40] Beretta D, Massetti M, Lanzani G and Caironi M 2017 Rev. Sci. Instrum. 88 015103 [41] Takazawa H, Obara H, Okada Y, Kobayashi K, Onishi T and Kajikawa T 2006 25th International Conference on Thermoelectrics, August 06-10, 2006, Vienna, Austria, p. 189 [42] Ying P J, He R, Mao J, Zhang Q H, Reith H, Sui J H, Ren Z F, Nielsch K and Schierning G 2021 Nat. Commun. 12 1121 [43] Müller E, Bruch J U and Schilz J 1998 17th International Conference on Thermoelectrics, May 24-28, 1998, Nagoya, Japan, p. 441 [44] Warzoha R J and Donovan B F 2017 Rev. Sci. Instrum. 88 094901 [45] Manno M, Yang B and Bar-Cohen A 2015 Rev. Sci. Instrum. 86 084701 [46] Montecucco A, Buckle J, Siviter J and Knox A R 2013 Journal of Electronic Materials42 1966 [47] Rauscher L, Fujimoto S, Kaibe H T and Sano S 2005 Measurement Science and Technology16 1054 [48] Kraemer D, Sui J, Mcenaney K, Zhao H, Jie Q, Ren Z F and Chen G 2015 Energy Environ. Sci. 8 1299 [49] He H, Liu W, Wu Y, Rong M, Zhao P and Tang X 2019 Energy Conversion and Management180 584 [50] Muto A, Kraemer D, Hao Q, Ren Z F and Chen G 2009 Rev. Sci. Instrum. 80 093901 [51] Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaey K, Chiesa M, Ren Z F and Chen G 2011 Nat. Mater. 10 532 [52] Xu C, Liang Z, Shang H, Wang D, Wang H, Ding F, Mao J and Ren Z F 2021 Materials Today Physics17 100336 [53] Bu Z, Zhang X, Shan B, Tang J, Liu H, Chen Z, Lin S, Li W and Pei Y 2021 Sci. Adv. 7 eabf2738 [54] http://www.ulvac.com/components/Thermal-Instruments/Thermoelectric-Testers/PEM-2 [55] Ohta M, Jood P, Murata M, Lee C H, Yamamoto A and Obara H 2019 Adv. Energy Mater. 9 1801304 [56] Zhang Q H, Liao J C, Tang Y S, Gu M, Chen M, Qiu P F, Bai S Q, Shi X, Uher C and Chen L D 2017 Energy Environ. Sci. 10 956 [57] Ebling D G, Krumm A, Pfeiffelmann B, Gottschald J, Bruchmann J, Benim A C, Adam M, Labs R, Herbertz R R and Stunz A 2016 Journal of Electronic Materials45 3433 [58] Harman T C 1958 J. Appl. Phys. 29 1373 [59] Chavez R, Becker A, Bartel M, Kessler V, Schierning G and Schmechel R 2013 Rev. Sci. Instrum. 84 106106 [60] Kraemer D and Chen G 2014 Rev. Sci. Instrum. 854 045107 [61] Yoo C Y, Kim Y, Hwang J, Yoon H, Cho B J, Min G and Park S H 2018 Energy152 834 [62] Lv S, Ji Y, Qian Z, Pan Y, Zhang Y and He W 2021 Applied Thermal Engineering190 116753 [63] Yu C and Chau K T 2009 Energy Conversion and Management50 1506 [64] Montecucco A, Siviter J and Knox A R 2012 IEEE Energy Conversion Congress and Exposition, September 15-20, 2012, Raleigh, NC, p. 2777 [65] Phillip N, Maganga O, Burnham K J, Ellis M A, Robinson S, Dunn J and Rouaud C 2013 Journal of Electronic Materials42 1900 [66] Harish S, Sivaprahasam D, Jayachandran B, Gopalan R and Sundararajan G 2021 Energy Conversion and Management232 113900 [67] Arai K, Romanjek K, Nishikawa K, Nishimoto S, Komasaki M, Nagatomo Y and Kuromitsu Y 2021 Engineering Failure Analysis120 105088 [68] Liu Z H, Sato N, Gao W H, Yubuta K, Kawamoto N, Mitome M, Kurashima K, Owada Y, Nagase K, Lee C H, Yi J, Tsuchiya K and Mori T 2021 Joule5 1196 [69] Mengali O J and Seiler M R 1962 Advanced Energy Conversion2 59 [70] Liu W S, Wang H Z, Wang L J, Wang X W, Joshi G, Chen G and Ren Z F 2013 Journal of Materials Chemistry A1 13093 [71] Liu W S and Bai S Q 2019 Journal of Materiomics5 321 [72] Kim D H, Kim C, Kim J T, Yoon D K and Kim H 2018 Measurement129 281 [73] Gupta R P, Mccarty R, Bierschenk J and Sharp J 2013 MRS Proceedings1490 153 [74] Kim Y, Yoon G and Park S H 2016 Experimental Mechanics56 861 [75] Chen M 2011 Rev. Sci. Instrum. 82 116109 [76] Annapragada S R, Salamon T, Kolodner P, Hodes M and Garimella S V 2012 IEEE Transactions on Components, Packaging and Manufacturing Technology2 668 [77] Beltrán-Pitarch B, Vidan F and Garcia-Canadas J 2021 International Journal of Heat and Mass Transfer173 121247 [78] Hu X K, Liu X X, Guo Z T and Zhu L M 2021 Rev. Sci. Instrum. 92 025110 [79] Schuler R, Madathil R K and Norby T 2021 Rev. Sci. Instrum. 92 043902
A self-powered and sensitive terahertz photodetection based on PdSe2 Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.