Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 048502    DOI: 10.1088/1674-1056/ac1b8f
Special Issue: TOPICAL REVIEW — Progress in thermoelectric materials and devices
TOPICAL REVIEW—Progress in thermoelectric materials and devices Prev   Next  

Module-level design and characterization of thermoelectric power generator

Kang Zhu(朱康)1, Shengqiang Bai(柏胜强)3,4, Hee Seok Kim5,†, and Weishu Liu(刘玮书)1,2,‡
1 Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
2 Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China;
3 The State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
4 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
5 Mechanical Engineering, School of Engineering&Technology, University of Washington Tacoma, Tacoma, WA 98402, USA
Abstract  Thermoelectric power generation provides us the unique capability to explore the deep space and holds promise for harvesting the waste heat and providing a battery-free power supply for IoTs. The past years have witnessed massive progress in thermoelectric materials, while the module-level development is still lagged behind. We would like to shine some light on the module-level design and characterization of thermoelectric power generators (TEGs). In the module-level design, we review material selection, thermal management, and the determination of structural parameters. We also look into the module-level characterization, with particular attention on the heat flux measurement. Finally, the challenge in the optimal design and reliable characterization of thermoelectric power generators is discussed, together with a calling to establish a standard test procedure.
Keywords:  thermoelectric      module-level design      characterization  
Received:  23 June 2021      Revised:  29 July 2021      Accepted manuscript online:  07 August 2021
PACS:  85.80.Fi (Thermoelectric devices)  
  84.60.Rb (Thermoelectric, electrogasdynamic and other direct energy conversion)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: The work is supported by Shenzhen DRC project (Grant No.[2018]1433).
Corresponding Authors:  Hee Seok Kim, Weishu Liu     E-mail:;

Cite this article: 

Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书) Module-level design and characterization of thermoelectric power generator 2022 Chin. Phys. B 31 048502

[1] Zakrajsek J F, Woerner D F, Cairnsgallimore D, Johnson S G and Qualls L 2016 IEEE Aerospace Conference, March 05-12, 2016, Big Sky, MT, America, p. 1
[2] Salvador J R 2017 Technical Report, US Department of Energy 1414341
[3] Yang Y, Lin Z H, Hou T, Zhang F and Wang Z L 2012 Nano Research 5 888
[4] Ioffe A F 1957 Semiconductor Thermolements and Thermoelectric Cooling (London:Infosearch Limited) pp. 38-40
[5] Borup K A, de Boor J, Wang H, Drymiotis F, Gascoin F, Shi X, Chen L D, Fedorov M I, Muller E, Iversen B B and Snyder G J 2015 Energy Environ. Sci. 8 423
[6] Lalonde A D, Pei Y Z and Snyder G J 2011 Energy Environ. Sci. 4 2090
[7] Wang H, Bai S Q, Chen L D, Cuenat A, Joshi G, Kleinke H, König J, Lee H W, Martin J, Oh M W, Porter W D, Ren Z F, Salvador J, Sharp J, Taylor P, Thompson A J and Tseng Y C 2015 Journal of Electronic Materials 44 4482
[8] Chen Z W, Zhang X Y, Lin S Q, Chen L D and Pei Y Z 2018 National Science Review 5 888
[9] Wei T R, Guan M J, Yu, J J, Zhu T J, Chen L D and Shi X 2018 Joule 2 2183
[10] Ziabari A, Suhir E and Shakouri A 2014 Microelectronics Journal 45 547
[11] Kraemer D, Jie Q, Mcenaney K, Feng C, Liu W, Weinstein L A, Loomis J, Ren Z F and Chen G 2016 Nat. Energy 1 16153
[12] Liu W S, Lukas K C, McEnaney K, Lee S Y, Zhang Q, Opeil C P, Chen G and Ren Z F 2013 Energy Environ. Sci. 6 552
[13] Angrist S W 1982 Direct Energy Conversion (Boston:Allyn and Bacon Inc) p. 145
[14] Kim H S, Liu W S, Chen G, Chu C W and Ren Z F 2015 Proc. Natl. Acad. Sci. USA 112 8205
[15] Kim H S, Liu W S and Ren Z F 2017 Energy Environ. Sci. 10 69
[16] Xing Y F, Liu R H, Liao J C, Wang C, Zhang Q H, Song Q F, Xia X G, Zhu T J, Bai S Q and Chen L D 2020 Joule 4 1
[17] Landmann D, Tang Y L, Kunz B, Huber R, Widner D, Rickhaus P, Widmer R N, Elsener H R and Battaglia C 2019 J. Appl. Phys. 126 085113
[18] Zhu K, Deng B, Zhang P X, Kim H S, Jiang P and Liu W S 2020 Energy Environ. Sci. 13 3514
[19] Lv S, He W, Jiang Q, Hu Z, Liu X, Chen H and Liu M 2018 Energy Conversion and Management 156 167
[20] Khalil A, Elhassnaoui A, Yadir S, Abdellatif O, Errami Y and Sahnoun S 2021 Energy 224 119967
[21] Choo S, Ejaz F, Ju H, Kim F, Lee J, Yang S E, Kim G, Kim H, Jo S, Baek S, Cho S, Kim K, Kim J Y, Ahn S, Chae H G, Kwon B and Son J S 2021 Nat. Commun. 12 3550
[22] Kim C S, Yang H M, Lee J, Lee G S, Choi H, Kim Y J, Lim S H, Cho S H and Cho B J 2018 ACS Energy Lett. 3 501
[23] Crane D T and Bell L E 2006 25th International Conference on Thermoelectrics, August 06-10, 2006, Vienna, Austria, p. 11
[24] Kim H S, Kikuchi K, Itoh T, Iida T and Taya M 2014 Materials Science and Engineering B 185 45
[25] Sakamoto T, Iida T, Ohno Y, Ishikawa M, Kogo Y, Hirayama N, Arai K, Nakamura T, Nishio K and Takanashi Y 2014 Journal of Electronic Materials 43 1620
[26] Min G 2005 Thermoelectric Module Design Theories, in Thermoelectrics, Handbook:Macro to Nano (BocaRaton, FL:CRC Press) p. 11
[27] Maduabuchi C, Njoku H, Eke M, Mgbemene C, Lamba R and Ibrahim J S 2021 Journal of Power Sources 500 229989
[28] He R, Schierning G and Nielsch K 2017 Advanced Materials Technologies 3 1700256
[29] Ji D X, Hu S W, Feng Y, Qin J, Yin Z J, Romagnoli A, Zhao J H and Qian H H 2021 Energy Conversion and Management 238 114158
[30] Guo M C, Zhu J B, Guo F K, Zhang Q, Cai W and Sui J H 2020 Materials Today Physics 15 100270
[31] Suarez F, Nozariasbmarz A, Vashaee D and Mehmet C Öztürk 2016 Energy Environ. Sci. 9 2099
[32] Mayer P M and Ram R J 2006 Nanoscale and Microscale Thermophysical Engineering 10 143
[33] Stevens J W 2001 Energy Conversion and Management 42 709
[34] Yazawa K and Shakouri A 2011 Environ. Sci. Technol. 45 7548
[35] Yazawa K and Shakouri A 2012 J. Appl. Phys. 111 024509
[36] Apertet Y, Ouerdane H, Glavatskaya O, Goupil C and Lecoeur P 2012 Europhys. Lett. 972 28001
[37] Apertet Y, Ouerdane H, Goupil C and Lecoeur P 2014 J. Appl. Phys. 11614 144901
[38] Lu X, Zhao D L, Ma T, Wang Q W, Fan J T and Yang R G 2018 Energy Conversion and Management 169 186
[39] Baranowski L L, Snyder G J and Toberer E S 2013 J. Appl. Phys. 113 204904
[40] Beretta D, Massetti M, Lanzani G and Caironi M 2017 Rev. Sci. Instrum. 88 015103
[41] Takazawa H, Obara H, Okada Y, Kobayashi K, Onishi T and Kajikawa T 2006 25th International Conference on Thermoelectrics, August 06-10, 2006, Vienna, Austria, p. 189
[42] Ying P J, He R, Mao J, Zhang Q H, Reith H, Sui J H, Ren Z F, Nielsch K and Schierning G 2021 Nat. Commun. 12 1121
[43] Müller E, Bruch J U and Schilz J 1998 17th International Conference on Thermoelectrics, May 24-28, 1998, Nagoya, Japan, p. 441
[44] Warzoha R J and Donovan B F 2017 Rev. Sci. Instrum. 88 094901
[45] Manno M, Yang B and Bar-Cohen A 2015 Rev. Sci. Instrum. 86 084701
[46] Montecucco A, Buckle J, Siviter J and Knox A R 2013 Journal of Electronic Materials 42 1966
[47] Rauscher L, Fujimoto S, Kaibe H T and Sano S 2005 Measurement Science and Technology 16 1054
[48] Kraemer D, Sui J, Mcenaney K, Zhao H, Jie Q, Ren Z F and Chen G 2015 Energy Environ. Sci. 8 1299
[49] He H, Liu W, Wu Y, Rong M, Zhao P and Tang X 2019 Energy Conversion and Management 180 584
[50] Muto A, Kraemer D, Hao Q, Ren Z F and Chen G 2009 Rev. Sci. Instrum. 80 093901
[51] Kraemer D, Poudel B, Feng H P, Caylor J C, Yu B, Yan X, Ma Y, Wang X, Wang D, Muto A, McEnaey K, Chiesa M, Ren Z F and Chen G 2011 Nat. Mater. 10 532
[52] Xu C, Liang Z, Shang H, Wang D, Wang H, Ding F, Mao J and Ren Z F 2021 Materials Today Physics 17 100336
[53] Bu Z, Zhang X, Shan B, Tang J, Liu H, Chen Z, Lin S, Li W and Pei Y 2021 Sci. Adv. 7 eabf2738
[55] Ohta M, Jood P, Murata M, Lee C H, Yamamoto A and Obara H 2019 Adv. Energy Mater. 9 1801304
[56] Zhang Q H, Liao J C, Tang Y S, Gu M, Chen M, Qiu P F, Bai S Q, Shi X, Uher C and Chen L D 2017 Energy Environ. Sci. 10 956
[57] Ebling D G, Krumm A, Pfeiffelmann B, Gottschald J, Bruchmann J, Benim A C, Adam M, Labs R, Herbertz R R and Stunz A 2016 Journal of Electronic Materials 45 3433
[58] Harman T C 1958 J. Appl. Phys. 29 1373
[59] Chavez R, Becker A, Bartel M, Kessler V, Schierning G and Schmechel R 2013 Rev. Sci. Instrum. 84 106106
[60] Kraemer D and Chen G 2014 Rev. Sci. Instrum. 854 045107
[61] Yoo C Y, Kim Y, Hwang J, Yoon H, Cho B J, Min G and Park S H 2018 Energy 152 834
[62] Lv S, Ji Y, Qian Z, Pan Y, Zhang Y and He W 2021 Applied Thermal Engineering 190 116753
[63] Yu C and Chau K T 2009 Energy Conversion and Management 50 1506
[64] Montecucco A, Siviter J and Knox A R 2012 IEEE Energy Conversion Congress and Exposition, September 15-20, 2012, Raleigh, NC, p. 2777
[65] Phillip N, Maganga O, Burnham K J, Ellis M A, Robinson S, Dunn J and Rouaud C 2013 Journal of Electronic Materials 42 1900
[66] Harish S, Sivaprahasam D, Jayachandran B, Gopalan R and Sundararajan G 2021 Energy Conversion and Management 232 113900
[67] Arai K, Romanjek K, Nishikawa K, Nishimoto S, Komasaki M, Nagatomo Y and Kuromitsu Y 2021 Engineering Failure Analysis 120 105088
[68] Liu Z H, Sato N, Gao W H, Yubuta K, Kawamoto N, Mitome M, Kurashima K, Owada Y, Nagase K, Lee C H, Yi J, Tsuchiya K and Mori T 2021 Joule 5 1196
[69] Mengali O J and Seiler M R 1962 Advanced Energy Conversion 2 59
[70] Liu W S, Wang H Z, Wang L J, Wang X W, Joshi G, Chen G and Ren Z F 2013 Journal of Materials Chemistry A 1 13093
[71] Liu W S and Bai S Q 2019 Journal of Materiomics 5 321
[72] Kim D H, Kim C, Kim J T, Yoon D K and Kim H 2018 Measurement 129 281
[73] Gupta R P, Mccarty R, Bierschenk J and Sharp J 2013 MRS Proceedings 1490 153
[74] Kim Y, Yoon G and Park S H 2016 Experimental Mechanics 56 861
[75] Chen M 2011 Rev. Sci. Instrum. 82 116109
[76] Annapragada S R, Salamon T, Kolodner P, Hodes M and Garimella S V 2012 IEEE Transactions on Components, Packaging and Manufacturing Technology 2 668
[77] Beltrán-Pitarch B, Vidan F and Garcia-Canadas J 2021 International Journal of Heat and Mass Transfer 173 121247
[78] Hu X K, Liu X X, Guo Z T and Zhu L M 2021 Rev. Sci. Instrum. 92 025110
[79] Schuler R, Madathil R K and Norby T 2021 Rev. Sci. Instrum. 92 043902
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[4] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[8] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[11] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[14] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
[15] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
No Suggested Reading articles found!