|
|
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy |
Shuyao Chen(陈姝瑶)1, Yunfei Xie(谢云飞)1, Yucong Yang(杨玉聪)1, Dong Gao(高栋)1, Donghua Liu(刘冬华)2,†, Lin Qin(秦林)3, Wei Yan(严巍)1, Bi Tan(谭碧)1, Qiuli Chen(陈秋丽)1, Tao Gong(龚涛)1, En Li(李恩)1,3, Lei Bi(毕磊)1, Tao Liu(刘涛)1,‡, and Longjiang Deng(邓龙江)1 |
1 National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054, China; 2 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; 3 School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
|
|
Abstract Yttrium iron garnet (YIG) films possessing both perpendicular magnetic anisotropy (PMA) and low damping would serve as ideal candidates for high-speed energy-efficient spintronic and magnonic devices. However, it is still challenging to achieve PMA in YIG films thicker than 20 nm, which is a major bottleneck for their development. In this work, we demonstrate that this problem can be solved by using substrates with moderate lattice mismatch with YIG so as to suppress the excessive strain-induced stress release as increasing the YIG thickness. After carefully optimizing the growth and annealing conditions, we have achieved out-of-plane spontaneous magnetization in YIG films grown on sGGG substrates, even when they are as thick as 50 nm. Furthermore, ferromagnetic resonance and spin pumping induced inverse spin Hall effect measurements further verify the good spin transparency at the surface of our YIG films.
|
Received: 16 December 2021
Revised: 17 January 2022
Accepted manuscript online: 19 January 2022
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
75.30.Gw
|
(Magnetic anisotropy)
|
|
85.70.Kh
|
(Magnetic thin film devices: magnetic heads (magnetoresistive, inductive, etc.); domain-motion devices, etc.)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 52072060 and 52021001), the National Key R&D Program of China (Grant No. 2021YFB2801600), and the China Postdoctoral Science Foundation (Grant No. 2021M700679). |
Corresponding Authors:
Donghua Liu, Tao Liu
E-mail: dhliu@uestc.edu.cn;liu.tao@uestc.edu.cn
|
Cite this article:
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江) The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy 2022 Chin. Phys. B 31 048503
|
[1] Sampaio J, Cros V, Rohart S, Thiaville A and Fert A 2013 Nat. Nanotechnol. 8 839 [2] Karayev S, Murray P D, Khadka D, Thapaliya T R, Liu K and Huang S X 2019 Phys. Rev. Mater. 3 041401 [3] Liu L, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602 [4] Li P, Liu T, Chang H, Kalitsov A, Zhang W, Csaba G, Li W, Richardson D, DeMann A, Rimal G, Dey H, Jiang J S, Porod W, Field S B, Tang J, Marconi M C, Hoffffmann A, Mryasov O and Wu M 2016 Nat. Commun. 7 12688 [5] Vogt K, Schultheiss H, Jain S, Pearson J E, Hoffmann A, Bader S D and Hillebrands B 2012 Appl. Phys. Lett. 101 042410 [6] Liu H, Chen J, Liu T, Heimbach F, Yu H, Xiao Y, Hu J, Liu M, Chang H, Stueckler T, Tu S, Zhang Y, Gao P, Liao Z, Yu D, Xia K, Lei N, Zhao W and Wu M 2018 Nat. Commun. 9 738 [7] Yang Y, Liu T, Bi L and Deng L 2020 J. Alloys Compd. 860 158235 [8] Tang C, Sellappan P, Liu Y, Xu Y, Garay J E and Shi J 2016 Phys. Rev. B 94 140403 [9] Ortiz V H, Aldosary M, Li J, Xu Y, Lohmann M I, Sellappan P, Kodera Y, Garay J E and Shi J 2018 APL Mater. 6 121113 [10] Ciubotariu O, Semisalova A, Lenz K and Albrecht M 2019 Sci. Rep. 9 17474 [11] Quindeau A, Avci C O, Liu W, Sun C, Mann M, Tang A S, Onbasli M C, Bono D, Voyles P M, Xu Y, Robinson J, Beach G S D and Ross C A 2017 Adv. Electron. Mater. 3 1600376 [12] Zanjani S M and OnbaslıM C 2020 J. Magn. Magn. Mater. 499 166108 [13] Crossley S, Quindeau A, Swartz A G, Rosenberg E R, Beran L, Avci C O, Hikita Y, Ross C A and Hwang H Y 2019 Appl. Phys. Lett. 115 172402 [14] Wu C N, Tseng C C, Fanchiang Y T, Cheng C K, Lin K Y, Yeh S L, Yang S R, Wu C T, Liu T, Wu M, Hong M and Kwo J 2018 Sci. Rep. 8 11087 [15] Rosenberg E R, Beran L, Avci C O, Zeledon C, Song B, Gonzalez-Fuentes C, Mendil J, Gambardella P, Veis M, Garcia C, Beach G S D and Ross C A 2018 Phys. Rev. Mater. 2 094405 [16] Chen H, Cheng D, Yang H, Wang D, Zhou S, Shi Z and Qiu X 2020 Appl. Phys. Lett. 116 112401 [17] Lin Y, Jin L, Zhang H, Zhong Z, Yang Q, Rao Y and Li M 2020 J. Magn. Magn. Mater. 496 165886 [18] Zhou H A, Cai L, Xu T, Zhao Y and Jian W 2021 Chin. Phys. B 30 097503 [19] Ding J, Liu T, Chang H and Wu M 2020 IEEE Magn. Lett. 11 5502305 [20] Li G, Bai H, Su J, Zhu Z Z, Zhang Y and Cai J W 2019 APL Mater. 7 041104 [21] Guo C Y, Wan C H, Zhao M K, Wu H, Fang C, Yan Z R, Feng J F, Liu H F and Han X F 2019 Appl. Phys. Lett. 114 192409 [22] Fu J, Hua M, Wen X, Xue M, Ding S, Wang M, Yu P, Liu S, Han J, Wang C, Du H, Yang Y and Yang J 2017 Appl. Phys. Lett. 110 202403 [23] Ding J, Liu C, Zhang Y, Erugu U, Quan Z, Yu R, McCollum E, Mo S, Yang S, Ding H, Xu X, Tang J, Yang X and Wu M 2020 Phys. Rev. Appl. 14 014017 [24] Wang H, Du C, Hammel P C and Yang F 2013 Phys. Rev. B 89 1 [25] Yu G, Upadhyaya P, Shao Q, Wu H, Yin G, Li X, He C, Jiang W, Han X, Amiri P K and Wang K L 2017 Nano Lett. 17 261 [26] Wei W S, He Z D, Qu Z and Du H F 2021 Rare Met. 40 3076 [27] Qin P X, Yan H, Wang X N, Feng Z X, Guo H X, Zhou X R, Wu H J, Zhang X, Leng Z G G, Chen H Y and Liu Z Q 2020 Rare Met. 39 95 [28] Richardson D, Katz S, Wang J, Takahashi Y K, Srinivasan K, Kalitsov A, Hono K, Ajan A and Wu M 2018 Phys. Rev. Appl. 10 054046 [29] Liu T, Kally J, Pillsbury T, Liu C, Chang H, Ding J, Cheng Y, Hilse M, Engel-Herbert R, Richardella A, Samarth N and Wu M 2020 Phys. Rev. Lett. 125 017204 [30] Heinz D M, Besser P J, Owens J M, Mee J E and Pulliam G R 1971 J. Appl. Phys. 42 1243 [31] Hansen P 1974 J. Appl. Phys. 45 3638 [32] Aulock and Von Aulock W H 1965 Handbook of microwave of ferrite materials (New York:Academic Press) [33] Anastassakis E 1990 J. Appl. Phys. 68 4561 [34] Clark A E and Strakna R E 1961 J. Appl. Phys. 32 1172 [35] Ding Y, Klemmer T J and Crawford T M 2004 J. Appl. Phys. 96 2969 [36] Soumah L, Beaulieu N, Qassym L, Carrétéro C, Jacquet E, Lebourgeois R, Youssef J B, Bortolotti1 P, Cros1 V and Anane A 2018 Nat. Commun. 9 3355 [37] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. Lett. 88 117601 [38] Tserkovnyak Y, Brataas A and Bauer G E W 2002 Phys. Rev. B 66 224403 [39] Du C, Wang H, Hammel P C and Yang F 2015 J. Appl. Phys. 117 172603 [40] Haertinger M, Back C H, Lotze J, Weiler M, Geprags S, Huebl H, Goennenwein S T B and Woltersdorf G 2015 Phys. Rev. B 92 054437 [41] Hamadeh A, d'Allivy Kelly O, Hahn C, Meley H, Bernard R, Molpeceres A H, Naletov V V, Viret M, Anane A, Cros V, Demokritov S O, Prieto J L, Muñoz M, de Loubens G and Klein O 2014 Phys. Rev. Lett. 113 197203 [42] DC M, Liu T, Chen J Y, Peterson T, Sahu P, Li H, Zhao Z, Wu M and Wang J P 2019 Appl. Phys. Lett. 114 102401 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|