Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084212    DOI: 10.1088/1674-1056/aba945
Special Issue: SPECIAL TOPIC —Terahertz physics
TOPICAL REVIEW—Terahertz physics Prev   Next  

Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors

Zhi-Yong Tan(谭智勇)1,2, Wen-Jian Wan(万文坚)1, Jun-Cheng Cao(曹俊诚)1,2
1 Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

As semiconductor devices, the terahertz quantum-cascade laser is a coherent source based on intersubband transitions of unipolar carriers while the terahertz quantum-well photodetector is a kind of detector which matches the laser frequency. They are solid-state, electrically operated, and can be easily integrated with other components. This paper reviews the state of the art for the design, working performance, and future directions of the two devices. Their applications in photoelectric characterization and imaging are also discussed.

Keywords:  terahertz      semiconductor device      photoelectric characterization      imaging system  
Received:  04 May 2020      Revised:  15 July 2020      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  42.30.-d (Imaging and optical processing)  
  95.85.Gn (Far infrared (10-300 μm))  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2017YFA0701005), the National Natural Science Foundation of China (Grant Nos. 61927813, 61775229, 61704181, and 61991432), and the Shanghai International Cooperation Project, China (Grant No. 18590780100).

Corresponding Authors:  Jun-Cheng Cao     E-mail:  jccao@mail.sim.ac.cn

Cite this article: 

Zhi-Yong Tan(谭智勇), Wen-Jian Wan(万文坚), Jun-Cheng Cao(曹俊诚) Research progress in terahertz quantum-cascade lasers and quantum-well photodetectors 2020 Chin. Phys. B 29 084212

[1] Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Nature 417 156
[2] Liu H C, Song C Y, SpringThorpe A J and Cao J C 2004 Appl. Phys. Lett. 84 4068
[3] Tonouchi M 2007 Nat. Photon. 1 97
[4] Liang G Z, Liu T and Wang Q J 2017 IEEE J. Sel. Top. Quant. 23 1200118
[5] Mittleman D M 2018 Opt. Express 26 9417
[6] Sizov F 2018 Semicond. Sci. Technol. 33 123001
[7] Tan Z Y, Wan W J, Li H and Cao J C 2017 Chin. Opt. 10 68(in Chinese)
[8] Tan Z Y and Cao J C 2019 Chin. J. Lasers 46 0614004(in Chinese)
[9] Bosco L, Franckié M, Scalari G, Beck M, Wacker A and Faist J 2019 Appl. Phys. Lett. 115 010601
[10] Wan W J, Li H and Cao J C 2018 Opt. Express 26 980
[11] Li L H, Chen L, Freeman J R, Salih M, Dean P, Davies A G and Linfield E H 2017 Electron. Lett. 53 799
[12] Wienold M, Röben B, Schrottke L, Sharma R, Tahraoui A, Biermann K and Grahn H T 2014 Opt. Express 22 3334
[13] Wang X M, Shen C L, Jiang T, Zhan Z Q, Deng Q H, Li W H, Wu W D, Yang N, Chu W D and Duan S Q 2016 AIP Adv. 6 075210
[14] Vitiello M S, Consolino L, Bartalini S, Taschin A, Tredicucci A, Inguscio M and De Natale P 2012 Nat. Photon. 6 525
[15] Li H, Wan W J, Tan Z Y, Fu Z L, Wang H X, Zhou T, Li Z P, Wang C, Guo X G and Cao J C 2017 Sci. Rep. 7 3452
[16] Zhou Z T, Zhou T, Zhang S Q, Shi Z F, Chen Y, Wan W J, Li X X, Chen X Z, Corder S N G, Fu Z L, Chen L, Mao Y, Cao J C, Omenetto F G, Liu M K, Li H and Tao T H 2018 Adv. Sci. 5 1700982
[17] Kliebisch O, Heinecke D C, Barbieri S, Santarelli G, Li H, Sirtori C and Dekorsy T 2018 Optica 5 1431
[18] Richter H, Greiner-Bär M, Pavlov S G, Semenov A D, Wienold M, Schrottke L, Giehler M, Hey R, Grahn H T and Hübers H W 2010 Opt. Express 18 10177
[19] Kumar S 2011 IEEE J. Sel. Top. Quant. 17 38
[20] Li L H, Chen L, Zhu J, Freeman J, Dean P, Valavanis A, Davies A G and Linfield E H 2014 Electron. Lett. 50 309
[21] Kumar S, Hu Q and Reno J L 2009 Appl. Phys. Lett. 94 131105
[22] Williams B S, Callebaut H, Kumar S and Hu Q 2003 Appl. Phys. Lett. 82 1015
[23] Scalari G, Hoyler N and Faist J 2005 Appl. Phys. Lett. 86 181101
[24] Liu H C, Wäechter M, Ban D, Wasilewski Z R, Buchanan M, Aers G C, Cao J C, Feng S L, Williams B S and Hu Q 2005 Appl. Phys. Lett. 87 141102
[25] Kumar S, Williams B S, Hu Q and Reno J L 2006 Appl. Phys. Lett. 88 121123
[26] Worrall C, Alton J, Houghton M, Barbieri S, Beere H E, Ritchie D and Sirtori C 2006 Opt. Express 14 171
[27] Lü J T and Cao J C 2006 Appl. Phys. Lett. 88 061119
[28] Li H, Cao J C, Tan Z Y and Feng S L 2008 J. Appl. Phys. 104 103101
[29] Freeman J R, Marshall O P, Beere H E and Ritchie D A 2008 Opt. Express 16 19830
[30] Scalari G, Walther C and Faist J 2006 Appl. Phys. Lett. 88 141102
[31] Kumar S, Chan CWI, Hu Q and Reno J L 2009 Appl. Phys. Lett. 95 141110
[32] Wade A, Fedorov G, Smirnov D, Kumar S, Williams B S, Hu Q and Reno J L 2009 Nat. Photon. 3 41
[33] Kumar S and Hu Q 2009 Phys. Rev. B 80 245316
[34] Freeman J R, Madéo J, Brewer A, Dhillon S, Marshall O P, Jukam N, Oustinov D, Tignon J, Beere H E and Ritchie D A 2010 Appl. Phys. Lett. 96 051120
[35] Kumar S, Chan C W I, Hu Q and Reno J L 2010 Nat. Phys. 7 166
[36] Williams B S, Kumar S, Hu Q and Reno J L 2006 Electron. Lett. 42 89
[37] Brandstetter M, Deutsch C, Krall M, Detz H, MacFarland D C, Zederbauer T, Andrews A M, Schrenk W, Strasser G and Unterrainer K 2013 Appl. Phys. Lett. 103 171113
[38] Li L H, Zhu J X, Chen L, Davies A G and Linfield E H 2015 Opt. Express 23 2720
[39] Ajili L, Scalari G and Faist J 2005 Appl. Phys. Lett. 87 141107
[40] Fischer M, Scalari G, Walther C and Faist J 2009 J. Cryst. Growth 311 1939
[41] Deutsch C, Krall M, Brandstetter M, Detz H, Andrews A M, Klang P, Schrenk W, Strasser G and Unterrainer K 2012 Appl. Phys. Lett. 101 211117
[42] Deutsch C, Kainz M A, Krall M, Brandstetter M, Bachmann D, Schönhuber S, Detz H Zederbauer T, MacFarland D, Andrews A M, Schrenk W, Beck M Ohtani K Faist J Strasser G and Unterrainer K 2017 ACS Photonics 4 957
[43] Vukmirovića N, Jovanović V D, Indjin D, Ikonić Z and Harrison P 2005 J. Appl. Phys. 97 103106
[44] Bellotti E, Driscoll K, Moustakas T D and Paiella R 2008 Appl. Phys. Lett. 92 101112
[45] Terashima W and Hirayama H 2015 Proc. SPIE 9483 948304
[46] Popadic M, Milanovic V and Indjin D 2006 J. Appl. Phys. 100 073709
[47] Bellotti E, Driscoll K, Moustakas T D and Paiella R 2009 J. Appl. Phys. 105 113103
[48] Lynch S A, Bates R and Paul D J 2002 Appl. Phys. Lett. 81 1543
[49] Lever L, Valavanis A, Ikonić Z and Kelsall R W 2008 Appl. Phys. Lett. 92 021124
[50] Borak A 2005 Science 308 638
[51] Luo H, Laframboise S R, Wasilewski Z R, Aers G C, Liu H C and Cao J C 2007 Appl. Phys. Lett. 90 041112
[52] Kumar S, Williams B S, Qin Q, Lee A W M, Hu Q and Reno J L 2007 Opt. Express 15 113
[53] Williams B S, Kumar S, Hu Q and Reno J L 2005 Opt. Express 13 3331
[54] Fasching G, Benz A, Unterrainer K R 2005 Appl. Phys. Lett. 87 211112
[55] Cao J C 2012 Sci. China Inform. Sci. 55 16
[56] Cao J C, Li H, Han Y J, Tan Z Y, Lü J T, Luo H, Laframboise S and Liu H C 2008 Chin. Phys. Lett. 25 953
[57] Zhang H, Dunbar L A, Scalari G, Houdré R and Faist J 2007 Opt. Express 15 16818
[58] Benz A, Fasching G, Deutsch C, Andrews A M, Unterrainer K, Klang P, Schrenk W and Strasser G 2007 Opt. Express 15 12418
[59] Amanti M I, Scalari G, Castellano F, Beck M and Faist J 2010 Opt. Express 18 6390
[60] Mahler L, Tredicucci A, Beltram F, Walther C, Faist J, Beere H E and Ritchie D A 2010 Appl. Phys. Lett. 96 191109
[61] Yu N, Wang Q, Kats M A, Fan J A, Khanna S P, Li L H, Davies A G, Linfield E H and Capasso F 2010 Nat. Mater. 9 730
[62] Xu G, Colombelli R, Khanna S P, Belarouci A, Letartre X, Li L H, Linfield E H, Davies A G, Beere H E and Ritchie D A 2012 Nat. Commun. 3 952
[63] Xu G, Li L, Isac N, Halioua Y, Davies A G, Linfield E H and Colombelli R 2014 Appl. Phys. Lett. 104 091112
[64] Jin Y, Gao L, Chen J, Wu C Z, Reno J L and Kumar S 2018 Nat. Commun. 9 1407
[65] Amanti M I, Fischer M, Scalari G, Beck M and Faist J 2009 Nat. Photon. 3 586
[66] Wu C, Khanal S, Reno J L and Kumar S 2016 Optica 3 734
[67] Biasco S, Garrasi K, Castellano F, Li L H, Beere H E, Ritchie D A, Linfield E H, Davies A G and Vitiello M S 2018 Nat. Commun. 9 1122
[68] Mujagić E, Deutsch C, Detz H, Klang P, Nobile M, Andrews A M, Schrenk W, Unterrainer K and Strasser G 2009 Appl. Phys. Lett. 95 011120
[69] Chassagneux Y, Colombelli R, Maineult W, Barbieri S, Beere H E, Ritchie D A, Khanna S P, Linfield E H and Davies A G 2009 Nature 457 174
[70] Sevin G, Fowler D, Xu G, Julien F H, Colombelli R, Khanna S P, Linfield E H and Davies A G 2010 Appl. Phys. Lett. 97 131101
[71] Liang G, Liang H, Zhang Y, Li L H, Davies A G, Linfield E H, Yu S F, Liu H C and Wang Q J 2013 Opt. Express 21 31872
[72] Vitiello M S, Nobile M, Ronzani A, Tredicucci A, Castellano F, Talora V, Li L H, Linfield E H and Davies A G 2014 Nat. Commun. 5 5884
[73] Biasco S, Beere H E, Ritchie D A, Li L H, Davies A G, Linfield E H and Vitiello M S 2019 Light-Sci. Appl. 8 43
[74] Xu L, Curwen C A, Hon P W C, Chen Q S, Itoh T and Williams B S 2015 Appl. Phys. Lett. 107 221105
[75] Curwen C A, Reno J L and Williams B S 2018 Appl. Phys. Lett. 113 011104
[76] Xu L, Chen D, Curwen C A, Memarian M, Reno J L, Itoh T and Williams B S 2017 Optica 4 468
[77] Curwen C A, Reno J L and Williams B S 2019 Nat. Photon. 13 855
[78] Schneider H and Liu H C 2006 Quantum well infrared photodetectors:Physics and applications, (Berlin:Springer), pp. 45——80
[79] Guo X G, Tan Z Y, Cao J C and Liu H C 2009 Appl. Phys. Lett. 94 201101
[80] Tan Z Y, Guo X G, Cao J C, Li H, Wang X, Feng S L, Wasilewski Z R and Liu H C 2009 Semicond. Sci. Technol. 24 115014
[81] Guo X G, Cao J C, Zhang R, Tan Z Y and Liu H C 2013 IEEE J. Sel. Top. Quant. 19 8500508
[82] Jia J Y, Wang T M, Zhang Y H, Shen W Z and Schneider H 2015 IEEE Trans. Terahertz Sci. Technol. 5 715
[83] Luo H, Liu H C, Song C and Wasilewski Z R 2005 Appl. Phys. Lett. 86 231103
[84] Franke C, Walther M, Helm M, Schneider H 2015 Infrared Phys. Technol. 70 30
[85] Zhang R, Shao D X, Fu Z L, Wang H X, Zhou T, Tan Z Y and Cao J C 2017 IEEE J. Sel. Top. Quant. 23 3800407
[86] Grant P D, Laframboise S R, Dudek R, Graf M, Bezinger A and Liu H C 2009 Electron. Lett. 45 952
[87] Fathololoumi S, Dupont E, Ban D, Graf M, Laframboise S R, Wasilewski Z R and Liu H C 2010 IEEE J. Quantum Electron. 46 396
[88] Tan Z Y, Zhou T, Cao J C and Liu H C 2013 IEEE Photon. Technol. Lett. 25 1344
[89] Gu L, Tan Z Y, Wu Q Z, Wang C and Cao J C 2015 Chin. Opt. Lett. 13 081402
[90] Gu L L, Zhang R, Tan Z Y, Wan W J, Yin R, Guo X G and Cao J C 2014 J. Phys. D:Appl. Phys. 47 165101
[91] Zhang R, Fu Z L, Gu L L, Guo X G and Cao J C 2014 Appl. Phys. Lett. 105 231123
[92] Palaferri D, Todorov Y, Chen Y N, Madeo J, Vasanelli A, Li L H, Davies A G, Linfield E H and Sirtori C 2014 Appl. Phys. Lett. 106 161102
[93] Wang H X, Zhang R, Wang F, Jiao Z J, Shao D X, Fu Z L, Zhou T, Tan Z Y and Cao J C 2017 Electron. Lett. 53 1129
[94] Wang H X, Fu Z L, Shao D X, Zhang Z Z, Wang C, Tan Z Y, Guo X G and Cao J C 2018 Appl. Phys. Lett. 113 171107
[95] Zheng Y, Chen P, Yang H, Ding J, Zhou Y, Tang Z, Zhou X, Li Z, Li N, Chen X and Lu W 2019 Appl. Phys. Lett. 114 091105
[96] Yang H, Zheng Y, Li N, Wang J and Chen P 2020 J. Appl. Phys. 127 053104
[97] Tan Z Y, Guo X G, Cao J C Li H and Han Y J 2010 Acta Physic. Sin. 59 2391(in Chinese)
[98] Tan Z Y, Cao J C, Han Y J and Chen Z (U. S. Pantent) 8749225 B2[20140610]
[99] Tan Z Y, Cao J C, Gu L and Zhu Y H (U. S. Pantent) 10119860 B2[2018-11-06]
[100] Chen Z, Tan Z Y, Han Y J, Zhang R, Guo X G, Li H, Cao J C and Liu H C 2011 Electron. Lett. 47 1002
[101] Chen Z, Gu L, Tan Z Y, Wang C and Cao J C 2013 Chin. Opt. Lett. 11 112001
[102] Tan Z Y, Li H, Wan W J, Fu Z L, Wang C and Cao J C 2017 Electron. Lett. 53 91
[103] Wan W J, Li H, Zhou T and Cao J C 2017 Sci. Rep. 7 44109
[104] Li Z P, Wan W J, Zhou K, Liao X Y, Yang S J, Fu Z L, Cao J C and Hua Li H 2019 Phys. Rev. Appl. 12 044068
[105] Li H, Li Z P, Wan W J, Zhou K, Liao X Y, Yang S J, Wang C J, Cao J C and Zeng H P 2020 ACS Photonics 7 49
[106] Chan W L, Diebel J and Mittleman D M 2007 Rep. Prog. Phys. 70 1325
[107] Hu B B and Nuss M C 1995 Opt. Lett. 20 1716
[108] Darmo J, Tamosiunas V, Fasching G, Kröll J, Unterrainer K, Beck M, Giovannini M, Faist J, Kremser C and Debbage P 2004 Opt. Express 12 1879
[109] Kim S M, Hatami F and Harris J S 2006 Appl. Phys. Lett. 88 153903
[110] Li Q, Hu J Q and Yang Y F 2014 Opt. Precision Eng. 22 2188(in Chinese)
[111] Rothbart N, Richter H, Wienold M, Lutz Schrottke L, Grahn H T and Hübers H W 2013 IEEE Trans. THz Sci. Technol. 3 617
[112] Lee A W M and Hu Q 2005 Opt. Lett. 30 2563
[113] Lee A W M, Williams B S, Kumar S, Hu Q and Reno J L 2006 IEEE Photon. Technol. Lett. 18 1415
[114] Oda N, Yoneyama H and Sasaki T 2008 Proc. SPIE 6940 69402Y
[115] Oda N, Ishi T, Morimoto T, Sudou T, Tabata H, Kawabe S, Fukuda K, Lee A W M and Hu Q 2012 Proc. SPIE 8496 84960Q
[116] Lee A W M, Qin Q, Kumar S, Williams B S and Hu Q 2006 Appl. Phys. Lett. 89 141125
[117] Tan Z Y, Gu L, Xu T H, Zhou T and Cao J C 2014 Chin. Opt. Lett. 12 070401
[118] Yang M W, Ji H B, Tan Z Y, Zhang H F, Wang Q, Peng N S, Gu J Q, Zhu Y M and Cao J C 2016 Acta Optic. Sin. 36 0611004(in Chinese)
[119] Zhou T, Zhang R, Guo X G, Tan Z Y, Chen Z, Cao J C and Liu H C 2012 IEEE Photon. Technol. Lett. 24 1109
[120] Tan Z Y, Zhou T, Fu Z L and Cao J C 2014 Electron. Lett. 50 389
[121] Qiu F C, Tan Z Y, Fu Z L, Wan W J, Li M Q, Wang C and Cao J C 2018 Opt. Commun. 427 170
[122] Schneider H and Liu H C 2006 Quantum well infrared photodetectors:Physics and applications, (Berlin:Springer), pp. 161-164
[123] Fu Z L, Gu L L, Guo X G, Tan Z Y, Wan W J, Zhou T, Shao D X, Zhang R and Cao J 2016 Sci. Rep. 6 25383
[124] Degl'Innocenti R, Wallis R, Wei B, Xiao L, Kindness S J, Mitrofanov O, Braeuninger-Weimer P, Hofmann S, Beere H E and Ritchie D A 2017 ACS Photonics 4 2150
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[12] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[13] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[14] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[15] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
No Suggested Reading articles found!