Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani1, Sajad Jafari1,2,†, and Hamed Azarnoush1
1 Department of Biomedical Engineering, Amirkabir University of Technology, No. 350, Hafez Ave., Valiasr Square, Tehran 159163-4311, Iran; 2 Health Technology Research Institute, Amirkabir University of Technology, No. 350, Hafez Ave., Valiasr Square, Tehran 159163-4311, Iran
Abstract Synchronization is a widespread phenomenon in both synthetic and real-world networks. This collective behavior of simple and complex systems has been attracting much research during the last decades. Two different routes to synchrony are defined in networks; first-order, characterized as explosive, and second-order, characterized as continuous transition. Although pioneer researches explained that the transition type is a generic feature in the networks, recent studies proposed some frameworks in which different phase and even chaotic oscillators exhibit explosive synchronization. The relationship between the structural properties of the network and the dynamical features of the oscillators is mainly proclaimed because some of these frameworks show abrupt transitions. Despite different theoretical analyses about the appearance of the first-order transition, studies are limited to the mean-field theory, which cannot be generalized to all networks. There are different real-world and man-made networks whose properties can be characterized in terms of explosive synchronization, e.g., the transition from unconsciousness to wakefulness in the brain and spontaneous synchronization of power-grid networks. In this review article, explosive synchronization is discussed from two main aspects. First, pioneer articles are categorized from the dynamical-structural framework point of view. Then, articles that considered different oscillators in the explosive synchronization frameworks are studied. In this article, the main focus is on the explosive synchronization in networks with chaotic and neuronal oscillators. Also, efforts have been made to consider the recent articles which proposed new frameworks of explosive synchronization.
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush Explosive synchronization: From synthetic to real-world networks 2022 Chin. Phys. B 31 020504
[1] Pikovsky A, Rosenblum M and Kurths J 2019 Acta Phys. Sin.68 180503 (in Chinese) [2] Arenas A, Díaz-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 44 401 [3] Rosenblum M and Pikovsky A 2003 Contemporary Physics 44 401 [4] Wu N P, Cheng H Y, Dai Q L and Li H H 2016 Chin. Phys. Lett. 33 070501 [5] He Z, Wang X, Zhang G Y and Zhan M 2014 Phys. Rev. E 90 012909 [6] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109 [7] Hoppensteadt F C and Izhikevich E M 2000 Phys. Rev. E 62 4010 [8] Qin Y, et al. 2020 IEEE Trans. Biomed. Eng. 67 3363 [9] Li C, Chen L and Aihara K 2007 BMC Systems Biology 1 1 [10] Murthy V N and Fetz E E 1996 Journal of Neurophysiology 76 3968 [11] Vilfan A and Duke T 2003 Phys. Rev. Lett. 91 114101 [12] Toiya M, González-Ochoa H O, Vanag V K, Fraden S and Epstein I R 2010 J. Phys. Chem. Lett. 1 1241 [13] Taylor A F, Tinsley M R, Wang F, Huang Z and Showalter K 2009 Science 323 614 [14] Blasius B and Stone L 2000 Int. J. Bifur. Chaos 10 2361 [15] Goldwyn E E and Hastings A 2009 Bull. Math. Biol. 71 130 [16] Shu R, Chen W and Xiao J H 2019 Acta Phys. Sin. 68 180503 (in Chinese) [17] Zhang J Q, Huang S F, Pang S T, Wang M S and Gao S 2015 Chin. Phys. Lett.32 120502 [18] Chen C, Ding Z X, Li S and Wang L H 2020 Chin. Phys. B29 040202 [19] Hu D, Sun X, Li P, Chen Y and Zhang J 2015 Chin. Phys. Lett.32 128901 [20] Li J H 2016 Chin. Phys. Lett.33 120501 [21] Liu Y L, Yu X M and Hao Y H 2015 Chin. Phys. Lett.32 110503 [22] Kuramoto Y 1975 International Symposium on Mathematical Problems in Theoretical Physics (Springer) pp. 420-422 [23] Pikovsky A S, Rosenblum M G, Osipov G V and Kurths J 1997 Physica D:Nonlinear Phenomena104 219 [24] Parastesh F, Jafari S, Azarnoush H, Shahriari Z, Wang Z, Boccaletti S and Perc M 2020 Phys. Rep.898 pp. 1-114 [25] Kuramoto Y 1984 Chemical Oscillations, Waves, and Turbulence (Springer) pp. 111-140 [26] Rodrigues F A, Peron T K D, Ji P and Kurths J 2016 Phys. Rep.610 1 [27] Pecora L M and Carroll T L 1990 Phys. Rev. Lett.64 821 [28] Boccaletti S, Kurths J, Osipov G, Valladares D and Zhou C 2002 Phys. Rep.366 1 [29] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett.76 1804 [30] Hramov A E and Koronovskii A A 2005 Physica D:Nonlinear Phenomena206 252 [31] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett.78 4193 [32] Abarbanel H D, Rulkov N F and Sushchik M M 1996 Phys. Rev. E53 4528 [33] Lai Q, Norouzi B and Liu F 2018 Chaos, Solitons and Fractals114 230 [34] Yan S L 2019 Acta Phys. Sin.68 170502 (in Chinese) [35] Yan H B, Gao H, Yang G W, Hao H B, Niu Y and Liu P 2020 Chin. Phys. B29 020504 [36] Guo D D and Lu Z S 2019 Chin. Phys. B28 110501 [37] Lai Q 2021 Int. J. Bifur. Chaos31 2150013 [38] Lai Q, Wan Z, Kengne L K, Kuate P D K and Chen C 2020 IEEE Tran. Circ. Syst. II:Express Briefs68 2197 [39] Lai Q, Wan Z and Kuate P D K 2020 Electron. Lett.56 1044 [40] Parastesh F, Jafari S and Azarnoush H 2019 Eur. Phys. J. Special Topics228 2123 [41] Gémez-Gardenes J, Gómez S, Arenas A and Moreno Y 2011 Phys. Rev. Lett.106 128701 [42] D'Souza R M, Gómez-Gardeñes J, Nagler J and Arenas A 2019 Adv. Phys.68 123 [43] Boccaletti S, et al. 2016 Phys. Rep.660 1 [44] Erdös P and Rényi A 1964 Acta Mathematica Academiae Scientiarum Hungarica12 261 [45] Barabási A L and Albert R 1999 Science286 509 [46] Watts D J and Strogatz S H 1998 Nature393 440 [47] Pazó D 2005 Phys. Rev. E72 046211 [48] Basnarkov L and Urumov V 2007 Phys. Rev. E76 057201 [49] Basnarkov L and Urumov V 2008 Phys. Rev. E78 011113 [50] Bonilla L L, Neu J C and Spigler R 1992 J. Statistical Physics67 313 [51] Crawford J D 1994 J. Statistical Physics74 1047 [52] Achlioptas D, D'Souza R M and Spencer J 2009 Science323 1453 [53] Radicchi F and Fortunato S 2009 Phys. Rev. Lett.103 168701 [54] Gómez-Gardeñes J and Moreno Y 2006 Phys. Rev. E73 056124 [55] Zou Y, Pereira T, Small M, Liu Z and Kurths J 2014 Phys. Rev. Lett.112 114102 [56] Vlasov V, Zou Y and Pereira T 2015 Phys. Rev. E92 012904 [57] Xu C, Gao J, Sun Y, Huang X and Zheng Z 2015 Sci. Rep.5 12039 [58] Liu W, Wu Y, Xiao J and Zhan M 2013 Europhys. Lett.101 38002 [59] Newman M E 2002 Phys. Rev. Lett.89 208701 [60] Sendiña-Nadal I, et al. 2015 Phys. Rev. E91 032811 [61] Skardal P S and Arenas A 2014 Phys. Rev. E89 062811 [62] Cao L, Tian C, Wang Z, Zhang X and Liu Z 2018 Phys. Rev. E97 022220 [63] Leyva I, et al. 2013 Sci. Rep.3 1281 [64] Papoulis A and Saunders H 1989 Probability, Random Variables and Stochastic Processes? 2nd edn. ASME J. Vib., Acoust., Stress, and Reliab.111 123 [65] Leyva I, Sendina-Nadal I, Almendral J, Navas A, Olmi S and Boccaletti S 2013 Phys. Rev. E88 042808 [66] Zhu L H 2016 Chin. Phys. Lett.33 050501 [67] Pan T, Huang X, Xu C and Lü H 2019 Chin. Phys. B28 120503 [68] Zhang X, Hu X, Kurths J and Liu Z 2013 Phys. Rev. E88 010802 [69] Barbara P, Cawthorne A, Shitov S and Lobb C 1999 Phys. Rev. Lett.82 1963 [70] Bruesselbach H, Jones D C, Mangir M S, Minden M and Rogers J L 2005 Opt. Lett.30 1339 [71] Strogatz S H, Abrams D M, McRobie A, Eckhardt B and Ott E 2005 Nature438 43 [72] Filatrella G, Pedersen N F and Wiesenfeld K 2007 Phys. Rev. E75 017201 [73] Zhang X, Boccaletti S, Guan S and Liu Z 2015 Phys. Rev. Lett.114 038701 [74] Dai X, et al. 2020 Chaos, Solitons and Fractals132 109589 [75] Singla T and Rivera M 2020 Chaos:An Interdisciplinary Journal of Nonlinear Science30 113135 Singla T and Rivera M 2020 arXiv preprint arXiv:2007.09801 [76] Boccaletti S, et al. 2014 Phys. Rep.544 1 [77] Aleta A and Moreno Y 2019 Ann Rev. Condens. Matter Phys.10 45 [78] Kivelä M, Arenas A, Barthelemy M, Gleeson J P, Moreno Y and Porter M A 2014 J. Complex Networks2 203 [79] Taylor D, Shai S, Stanley N and Mucha P J 2016 Phys. Rev. Lett.116 228301 [80] Majhi S, Perc M and Ghosh D 2016 Sci. Rep.6 39033 [81] Shafiei M, Jafari S, Parastesh F, Ozer M, Kapitaniak T and Perc M 2020 Commun. Nonlinear Sci. Num. Simul.84 105175 [82] Vaiana M and Muldoon S F 2018 J. Nonlinear Sci.30 2147 [83] Reimann M W, et al. 2017 Frontiers in Computational Neuroscience11 48 [84] Kartun-Giles A P and Bianconi G 2019 Chaos, Solitons and Fractals:X1 100004 [85] Battiston F, Cencetti G, Iacopini I, et al. 2020 Phys. Rep.874 pp. 1-92 [86] Wang D, Zhao Y, Leng H and Small M 2020 Phys. Lett. A384 126895 [87] Andjelković M, Tadić B and Melnik R 2020 Sci. Rep.10 1 [88] Sakaguchi H and Kuramoto Y 1986 Prog. Theor. Phys.76 576 [89] Bick C, Ashwin P and Rodrigues A 2016 Chaos:An Interdisciplinary J. of Nonlinear Science26 094814 [90] Matamalas J T, Gómez S and Arenas A 2020 Phys. Rev. Research2 012049 [91] Skardal P S and Arenas A 2020 Commun. Phys.3 1 [92] Millán A P, Torres J J and Bianconi G 2020 Phys. Rev. Lett.124 218301 [93] Kuehn C and Bick C 2021 Sci. Adv.7 16 [94] Daido H 1996 Physica D:Nonlinear Phenomena91 24 [95] Huang X, Gao J, Sun Y T, Zheng Z G and Xu C 2016 Frontiers of Physics11 6 [96] Chen H B, Sun Y T, Gao J, Xu C and Zheng Z G 2017 Frontiers of Physics12 120504 [97] Kundu P, Khanra P, Hens C and Pal P 2017 Phys. Rev. E96 052216 [98] Kundu P and Pal P 2019 Chaos:An Interdisciplinary J. Nonlinear Science29 013123 [99] Zhu L 2020 J. Appl. Math. Phys.8 259 [100] Khanra P, Kundu P, Pal P, Ji P and Hens C 2020 Chaos:An Interdisciplinary J. Nonlinear Science30 031101 [101] Xiao Y, Jia W, Xu C, Lü H and Zheng Z 2017 Europhys. Lett.118 60005 [102] Khanra P, Kundu P, Hens C and Pal P 2018 Phys. Rev. E98 052315 [103] Kumar A and Jalan S 2021 Chaos:An Interdisciplinary Journal of Nonlinear Science31 041103 [104] Ansariara M, Emadi S, Adami V, Botha A and Kolahchi M 2020 Nonlinear Dynamics100 3685 [105] Yuan D, Zhao D Q, Xiao Y and Zhang Y X 2016 Chin. Phys. Lett.33 050502 [106] Tanaka H A, Lichtenberg A J and Oishi S I 1997 Physica D:Nonlinear Phenomena100 279 [107] Hu B and Zhou C 2000 Phys. Rev. E61 R1001 [108] Chen H, He G, Huang F, Shen C and Hou Z 2013 Chaos:An Interdisciplinary J. Nonlinear Science23 033124 [109] Khoshkhou M and Montakhab A 2018 Frontiers in Computational Neuroscience12 59 [110] Leyva I, et al. 2012 Phys. Rev. Lett.108 168702 [111] Khoshkhou M and Montakhab A 2020 Physica D:Nonlinear Phenomena405 132399 [112] Jun-Chan Z 2013 Chin. Phys. B22 060506 [113] Izhikevich E M 2003 IEEE Trans. Neural Networks14 1569 [114] Girardi-Schappo M, Tragtenberg M and Kinouchi O 2013 J. Neuroscience Methods220 116 [115] Bellman R 1966 Science153 34 [116] Zandi-Mehran N, Panahi S, et al. 2020 Chaos, Solitons and Fractals132 109558 [117] Courbage M and Nekorkin V I 2010 Int. J. Bifur. Chaos20 1631 [118] Rulkov N F 2002 Phys. Rev. E65 041922 [119] Chialvo D R 1995 Chaos, Solitons and Fractals5 461 [120] Boaretto B, Budzinski R, Prado T and Lopes S 2019 Phys. Rev. E100 052301 [121] Newman M E, Walls D, Newman M, Barabási A L and Watts D J 2011 The Structure and Dynamics of Networks (Princeton:Princeton University Press) pp. 310-320 [122] Gilroy A M and MacPherson B R (Eds.) 2016 Atlas of Anatomy, 3rd edn. (New York:Thieme Medical Publishers, Inc.) p. 760 [123] Wang C Q, Pumir A, Garnier N B and Liu Z H 2017 Frontiers of Physics12 128901 [124] Kim M, et al. 2016 Frontiers in Computational Neuroscience10 1 [125] Kim M, Kim S, Mashour G A and Lee U 2017 Frontiers in Computational Neuroscience11 55 [126] Zhu L, Tian L and Shi D 2013 Phys. Rev. E88 042921 [127] Yaffe R B, et al. 2015 Clinical Neurophysiology126 227 [128] Clauw D J 2014 JAMA311 1547 [129] Häuser W, et al. 2015 Nature Reviews Disease Primers1 1 [130] Sörensen J, Graven-Nielsen T, Henriksson K, Bengtsson M and Arendt-Nielsen L 1998 J. Rheumatology25 152 [131] Clauw D J 2009 The American Journal of Medicine 122 S3-S13 [132] Lee U, Kim M, Lee K, et al. 2018 Sci. Rep.8 pp. 1-11 [133] Van Den Heuvel M P and Sporns O 2011 J. Neuroscience31 15775 [134] Wang D 1999 Wiley Encyclopedia of Electrical and Electronics Engineering18 396 [135] Varigonda S and Georgiou T T 2001 IEEE Trans. Automatic Control46 65 [136] Pippard A B 2007 The Physics of Vibration (Cambridge:Cambridge University Press) [137] Epstein I R and Xu B 2016 Nature Nanotechnology11 312 [138] Grudziński K and Źebrowski J J 2004 Physica A:Statistical Mechanics and its Applications336 153 [139] Grasman J and Jansen M J W 1979 J. Math. Biol.7 171 [140] Cǎlugǎru D, Totz J F, Martens E A and Engel H 2020 Sci. Adv.6 eabb2637 [141] Pisarchik A, Jaimes-Reátegui R, et al. 2006 Phys. Rev. Lett.96 244102 [142] Zhao N, Sun Z, Yang X and Xu W 2018 Phys. Rev. E97 062203 [143] Bi H, Hu X, Zhang X, Zou Y, Liu Z and Guan S 2014 Europhys. Lett.108 50003 [144] Saxena G, Prasad A and Ramaswamy R 2012 Phys. Rep.521 205 [145] Koseska A, Volkov E and Kurths J 2013 Phys. Rev. Lett.111 024103 [146] Koseska A, Volkov E and Kurths J 2013 Phys. Rep.531 173 [147] Verma U K, Sharma A, Kamal N K, Kurths J and Shrimali M D 2017 Sci. Rep.7 1
Characteristics of vapor based on complex networks in China Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.