Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070203    DOI: 10.1088/1674-1056/ac5985
GENERAL Prev   Next  

Effect of observation time on source identification of diffusion in complex networks

Chaoyi Shi(史朝义)1, Qi Zhang(张琦)2, and Tianguang Chu(楚天广)1,†
1 College of Engineering, Peking University, Beijing 100871, China;
2 School of Information Technology and Management, University of International Business and Economics, Beijing 100105, China
Abstract  This paper examines the effect of the observation time on source identification of a discrete-time susceptible-infected-recovered diffusion process in a network with snapshot of partial nodes. We formulate the source identification problem as a maximum likelihood (ML) estimator and develop a statistical inference method based on Monte Carlo simulation (MCS) to estimate the source location and the initial time of diffusion. Experimental results in synthetic networks and real-world networks demonstrate evident impact of the observation time as well as the fraction of the observers on the concerned problem.
Keywords:  complex network      source identification      statistical inference      partial observation  
Received:  29 December 2021      Revised:  30 January 2022      Accepted manuscript online:  02 March 2022
PACS:  02.70.Uu (Applications of Monte Carlo methods)  
  87.23.Ge (Dynamics of social systems)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61673027 and 62106047), the Beijing Social Science Foundation (Grant No. 21GLC042), and the Humanity and Social Science Youth foundation of Ministry of Education, China (Grant No. 20YJCZH228).
Corresponding Authors:  Tianguang Chu     E-mail:  chutg@pku.edu.cn

Cite this article: 

Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广) Effect of observation time on source identification of diffusion in complex networks 2022 Chin. Phys. B 31 070203

[1] Newman M E J 2010 Networks:An Introduction (Oxford:Oxford University Press)
[2] Ji S G, Lü L Y, Yeung C H and Hu Y Q 2017 New J. Phys. 19 073020
[3] Brockmann D and Helbing D 2013 Science 342 6164
[4] Feng Y, Ding L, Huang Y H and Guan Z H 2016 Chin. Phys. B 25 128903
[5] Hao X and Li X 2021 Europhys. Lett. 134 58001
[6] Yan X L, Cui Y P and Ni S J 2020 Chin. Phys. B 29 048902
[7] Ruan Y R, Lao S Y, Xiao Y D, Wang J D and Bai L 2016 Chin. Phys. Lett. 33 028901
[8] Yang Y Z, Hu M and Huang T Y 2020 Chin. Phys. B 29 088903
[9] Huang L Y, Tang P C, Huo Y L, Zheng Y and Cheng X F 2019 Acta Phys. Sin. 68 128901 (in Chinese)
[10] Pan L M, Wang W, Cai S M and Zhou T 2019 Phys. Rev. E 100 022316
[11] Ding Z J, Liu T, Lou X X, Shen Z W, Zhu K J, Jiang R, Wang B H and Chen B K 2019 Physica A 516 6684
[12] Liu S L, Pang S P 2020 Chin. Phys. B 29 100202
[13] Shah D and Zaman T 2015 arXiv:1110.6230[math.PR]
[14] Wang H S, Wu J, Pan S R, Zhang P and Chen L 2017 Comput. Netw. 114 154
[15] Comin C H and Costa L D 2011 Phys. Rev. E 84 056105
[16] Altarelli F, Braunstein A, Dall'Asta L, Lage-Castellanos A and Zecchina R 2014 Phys. Rev. Lett. 112 118701
[17] Lokhov A Y, Mézard M, Ohta H and Zdeborová L 2014 Phys. Rev. E 90 012801
[18] Zhu K and Ying L 2014 arXiv:1510.01814[cs.SI]
[19] Shen Z S, Cao S N, Wang W X, Di Z R and Stanley H E 2016 Phys. Rev. E 93 032301
[20] Wang H J, Zhang F F and Sun K J 2021 Phys. Lett. A 393 127184
[21] Pinto P C, Thiran P and Vetterli M 2012 Phys. Rev. Lett. 109 068702
[22] Farajtabar M, Rodriguez M G, Zamani M, Du N, Zha H Y and Song L 2015 arXiv:1501.06582v1[cs.SI]
[23] Zhai X M, Wu W L and Xu W 2015 Comput. Soc. Netw. 2 17
[24] Antulov-Fantulin N, Lančić A, Šmuc T, Štefančić H and Šikić M 2015 Phys. Rev. Lett. 114 248701
[25] Shah C, Dehmamy N, Perra N, Chinazzi M, Barabási A L, Vespignani A and Yu R 2020 arXiv:2006.11913
[26] Guimera R, Danon L, Diaz-Guilera A, Giralt F and Arenas A 2003 Phys. Rev. E 68 065103
[27] Watts D J and Strogatz S H 1998 Nature 393 440
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[4] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[5] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[6] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[7] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[8] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[9] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[10] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[11] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[12] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[13] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
[14] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
[15] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
No Suggested Reading articles found!