Special Issue:
SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
|
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies |
Prev
Next
|
|
|
FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient |
Fei Yu(余飞)1,†, Zinan Zhang(张梓楠)1, Hui Shen(沈辉)1, Yuanyuan Huang(黄园媛)1, Shuo Cai(蔡烁)1, and Sichun Du(杜四春)2 |
1 School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410114, China; 2 College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China |
|
|
Abstract A memristive Hopfield neural network (MHNN) with a special activation gradient is proposed by adding a suitable memristor to the Hopfield neural network (HNN) with a special activation gradient. The MHNN is simulated and dynamically analyzed, and implemented on FPGA. Then, a new pseudo-random number generator (PRNG) based on MHNN is proposed. The post-processing unit of the PRNG is composed of nonlinear post-processor and XOR calculator, which effectively ensures the randomness of PRNG. The experiments in this paper comply with the IEEE 754-1985 high precision 32-bit floating point standard and are done on the Vivado design tool using a Xilinx XC7Z020CLG400-2 FPGA chip and the Verilog-HDL hardware programming language. The random sequence generated by the PRNG proposed in this paper has passed the NIST SP800-22 test suite and security analysis, proving its randomness and high performance. Finally, an image encryption system based on PRNG is proposed and implemented on FPGA, which proves the value of the image encryption system in the field of data encryption connected to the Internet of Things (IoT).
|
Received: 27 August 2021
Revised: 08 November 2021
Accepted manuscript online: 24 November 2021
|
PACS:
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
05.45.Vx
|
(Communication using chaos)
|
|
07.05.Mh
|
(Neural networks, fuzzy logic, artificial intelligence)
|
|
Fund: Project supported by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 21B0345), the Postgraduate Scientific Research Innovation Project of Changsha University of Science and Technology (Grant Nos. CX2021SS69 and CX2021SS72), the Postgraduate Scientific Research Innovation Project of Hunan Province, China (Grant No. CX20200884), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2019JJ50648, 2020JJ4622, and 2020JJ4221), the National Natural Science Foundation of China (Grant No. 62172058), and the Special Funds for the Construction of Innovative Provinces of Hunan Province, China (Grant Nos. 2020JK4046 and 2022SK2007). |
Corresponding Authors:
Fei Yu
E-mail: yufeiyfyf@csust.edu.cn
|
Cite this article:
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春) FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient 2022 Chin. Phys. B 31 020505
|
[1] Yin B and Wei X 2018 IEEE Internet Things J. 6 3352 [2] Gu K, Wang K M and Yang L L 2019 J. Inf. Secur. Appl. 49 102400 [3] Wang W Z, Wang X Q, Wang J, Xiong N N, Cai S and Liu P 2020 IEEE Trans. Syst. Man Cybern. Syst. [4] He S M, Zeng W N, Xie K, Yang H M, Lai M Y and Su X 2017 KSII Trans. Internet Inf. Syst. 11 1510 [5] Gu K, Wu N, Yin B and Jia W J 2019 IEEE Trans. Emerg. Top. Comput. 9 1883 [6] Hu G Y, Peng J and Kou W L 2019 Int. J. Comput. Intell. Sys. 12 643 [7] Yu F, Zhang Z N, Shen H, Huang Y Y, Cai S, Jin J and Du S C 2021 Front. Phys. 9 690651 [8] Wan Q Z, Zhou Z T, Ji W K, Wang C H and Yu F 2020 Complexity 1 7106861 [9] Liu T M, Banerjee S, Yan H Z and Mou J 2021 Eur. Phys. J. Plus 136 506 [10] Yu F, Shen H, Zhang Z N, Huang Y Y, Cai S and Du S C 2021 Integration 81 71 [11] Liu T M, Yan H Z, Banerjee S and Mou J 2021 Chaos, Solitons and Fractals 145 110791 [12] Zhou C Y, Xie F and Li Z J 2020 Chaos, Solitons and Fractals 137 109859 [13] Ding P F, Feng X Y and Wu C M 2020 Chin. Phys. B 29 108202 [14] Xu Q, Liu T, Feng C T, Bao H, Wu H G and Bao B C 2021 Chin. Phys. B 30 128702 [15] Xie W L, Wang C H and Lin H R 2021 Nonlinear Dyn. 104 4523 [16] Lin H R, Wang C H, Yu F, Cong X, Hong Q H, Yao W and Sun Y C 2020 IEEE Trans. Ind. Electron. 68 12708 [17] Li C L, Li Z Y, Feng W, Tong Y N, Du J R and Wei D Q 2019 Int. J. Electron. Commun. 110 152861 [18] Kong S X, Li C B, He S B, Çiçek S, and Lai Q 2021 Chin. Phys. B 30 110502 [19] Yu F, Liu L, Shen H, Zhang Z N, Huang Y Y, Cai S, Deng Z L and Wan Q Z 2020 Math. Probl. Eng. 2020 7530976 [20] Yu F, Wang C H, Yin J W and Xu H 2011 Chin. Phys. B 20 110505 [21] Bao H, Bao B C, Lin Y, Wang J and Wu H G 2016 Acta Phys. Sin. 65 180501 (in Chinese) [22] Hua Z Y, Zhang Y X and Zhou Y C 2020 IEEE Trans. Signal Process. 68 1937 [23] Xu C, Wang C H, Sun Y C, Hong Q H, Deng Q L and Chen H W 2021 Neurocomputing 462 581 [24] Yao W, Wang C H, Sun Y C and Zhou C 2020 IEEE Trans. Syst. Man Cybern. Syst. 52 260 [25] Yu F, Liu L, Xiao L, Li K L and Cai S 2019 Neurocomputing 350 108 [26] Long M and Zeng Y 2019 CMC-Comput. Mater. Contin. 58 493 [27] Wang J, Zou Y S, Peng L, Sherratt R S and Wang L 2020 J. Internet Technol. 21 1161 [28] Bao B C, Chen C J, Bao H, Zhang X, Xu Q and Chen M 2019 Int. J. Bifur. Chaos 29 1930010 [29] Yang L M and Wang C H 2021 Neurocomputing 460 117 [30] Yu F, Shen H, Zhang Z N, Huang Y Y, Cai S and Du S C 2021 Chaos, Solitons and Fractals 152 111350 [31] Lin H R, Wang C H, Deng Q L, Xu C, Deng Z K and Zhou C 2021 Nonlinear Dyn. 106 959 [32] Li R Y, Wang G Y, Dong Y Ji and Zhou W 2020 Acta Phys. Sin. 69 240501 (in Chinese) [33] Li Y, Li Z J, Ma M L and Wang M J 2020 Multimed. Tools. Appl. 79 29161 [34] He W L, Luo T H, Tang Y, Du W L, Tian Y C and Qian F 2020 IEEE Trans. Neural Netw. Learn. Syst. 31 3334 [35] Xiu C B, Zhou R X and Liu Y X 2020 Chaos, Solitons and Fractals 141 110316 [36] Wu A L, Chen Y and Zeng Z G 2021 Cogn. Neurodyn. 15 897 [37] Liu J and Xu R 2018 Int. J. Syst. Sci. 49 1300 [38] Yao W, Wang C H, Sun Y C, Zhou C and Lin H R 2020 Neurocomputing 404 367 [39] Lin H R, Wang C H, Chen C J, Sun Y C, Zhou C, Xu C and Hong Q H 2021 IEEE Trans. Circuits Syst. I-Regul Pap. 68 3397 [40] Zhou C, Wang C H, Sun Y C and Yao W 2020 Neurocomputing 403 211 [41] Dong L H and Yao G L 2016 J. Commun. 37 85 [42] Yu F, Li L X, He B Y, Liu L, Qian S, Zhang Z N, Shen H, Cai S and Li Y 2021 Eur. Phys. J. Spec. Top. 230 1763 [43] Barakat M L, Mansingka A S, Radwan A G and Salama K N 2013 ETRI J. 35 448 [44] Yuan Z S, Li H T and Zhu X H 2015 Acta Phys. Sin. 64 240503 (in Chinese) [45] Li X J, Mou J, Xiong L, Wang Z S and Xu J 2020 Opt. Laser Technol. 140 107074 [46] Deng J, Zhou M J, Wang C H, Wang S C and Xu C 2021 Multimed. Tools. Appl. 80 13821 [47] Zeng J and Wang C H 2021 Secur. Commun. Netw. 2021 6675565 [48] Cheng G F, Wang C H and Xu C 2020 Multimed. Tools. Appl. 79 29243 [49] Yang F F, Mou J, Ma C G and Cao Y H 2020 Opt. Lasers Eng. 129 106031 [50] Chen X, Qian S, Yu F, Zhang Z N, Shen H, Huang Y Y, Cai S, Deng Z L, Li Y and Du S C 2020 Complexity 2020 8274685 [51] Cheng S S, Sun J R and Xu C 2021 Int. J. Bifur. Chaos 31 2150125 [52] Xu C, Sun J R and Wang C H 2020 Multimed. Tools. Appl. 79 5573 [53] Hua Z Y, Zhu Z H, Chen Y Y and Li Y M 2021 Nonlinear Dyn. 104 4505 [54] Cui L, Luo W H and Ou Q L 2021 Chin. Phys. B 30 020501 [55] Huang Y J, Chen S J, Yang X H and Xiao J 2019 Chin. Phys. B 28 040701 [56] Ouannas A, Khennaoui A A, Momani S, Pham V T and El-Khazali R 2021 Chin. Phys. B 29 050504 [57] Zhang S, Zheng J H, Wang X P and Zeng Z G 2021 Chaos 31 011101 [58] Xiu C B, Zhou R X, Zhao S D and Xu G W 2021 Nonlinear Dyn. 104 789 [59] Zhang S, Zheng J H, Wang X P, Zeng Z G and He S B 2020 Nonlinear Dyn. 102 2821 [60] Tuna M 2020 Analog Integr. Circuit. Signal 105 167 [61] Yang F F and Wang X Y 2021 Phys. Scr. 96 035218 [62] Tlelo-Cuautle E, Díaz-Mu noz J D, González-Zapata A M, Li R, León-Salas W D, Fernández F V, Guillén-Fernández O and Cruz-Vega I 2020 Sensors 20 1326 [63] Kwan H K 1992 Electron. Lett. 28 1379 [64] Rukhin A, Soto J, Nechvatal J, Smid M, Barker E, Leigh S, Levenson M, Vangel Mark, Banks D, Heckert A, Dray J and Vo S 2001 A statistical test suite for random and pseudorandom number generators for cryptographic applications (Gaithersburg, MD:U.S. Department of Commerce) pp. 1-10 [65] Gu K, Jia W J and Jiang C L 2015 Comput. J. 58 792 [66] Cao D, Zheng B, Ji B F, Lei Z B and Feng C H 2020 Wirel. Netw. 26 1755 [67] Gu K, Wu N, Yin B and Jia W J 2019 IEEE Trans. Netw. Serv. Manag. 17 332 [68] Yu F, Qian S, Chen X, Huang Y Y, Cai S, Jin J and Du S C 2021 Complexity 2021 6683284 [69] Zhou Y, Li C L, Li W, Li H M, Feng W and Qian K 2021 Nonlinear Dyn. 103 2043 [70] Sun J R, Peng M, Liu F and Tang C 2020 Complexity 2020 8815315 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|