Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 068904    DOI: 10.1088/1674-1056/ac380d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

An extended improved global structure model for influential node identification in complex networks

Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文)
College of Electronic Engineering, National University of Defense Technology, Hefei 230037, China
Abstract  Accurate identification of influential nodes facilitates the control of rumor propagation and interrupts the spread of computer viruses. Many classical approaches have been proposed by researchers regarding different aspects. To explore the impact of location information in depth, this paper proposes an improved global structure model to characterize the influence of nodes. The method considers both the node's self-information and the role of the location information of neighboring nodes. First, degree centrality of each node is calculated, and then degree value of each node is used to represent self-influence, and degree values of the neighbor layer nodes are divided by the power of the path length, which is path attenuation used to represent global influence. Finally, an extended improved global structure model that considers the nearest neighbor information after combining self-influence and global influence is proposed to identify influential nodes. In this paper, the propagation process of a real network is obtained by simulation with the SIR model, and the effectiveness of the proposed method is verified from two aspects of discrimination and accuracy. The experimental results show that the proposed method is more accurate in identifying influential nodes than other comparative methods with multiple networks.
Keywords:  complex network      influential nodes      extended improved global structure model      SIR model  
Received:  02 August 2021      Revised:  29 October 2021      Accepted manuscript online:  10 November 2021
PACS:  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11975307).
Corresponding Authors:  Lun-Wen Wang     E-mail:  wanglunwenmust@nudt.edu.cn

Cite this article: 

Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文) An extended improved global structure model for influential node identification in complex networks 2022 Chin. Phys. B 31 068904

[1] Jung H and Phoa F K H 2021 Entropy 23 502
[2] Mazzarisi P, Zaoli S, Lillo F, Delgado L and Gurtner G 2020 J. Air Trans. Manag. 85 101801
[3] Reilly K H, Wang S M, Gould L H, Baquero M and Crossa A 2021 J. Transp. Health. 22 101128
[4] Pan X Y, Hu L, Hu P W and You Z H 2021 IEEEACM Trans. Comput. Biol. Bioinform. 14 3095947
[5] Freeman L C 1978 Soc. Networks 1 215
[6] Freeman L C 1977 Sociometry 40 35
[7] Sabidussi G 1966 Psychometrika 31 581
[8] Solá L, Romance M, Criado R, Flores J, García D A A and Boccaletti S 2013 Chaos 23 033131
[9] Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E and Makse H A 2010 Nat. Phys. 6 888
[10] Lü L Y, Zhou T, Zhang Q M and Stanley H E 2016 Nat. Commun. 7 440
[11] Zeng A and Zhang C J 2013 Phys. Lett. A 377 1031
[12] Sheikhahmadi A and Nematbakhsh M A 2017 J. Inf. Sci. 43 412
[13] Ibnoulouafi A and Haziti M E 2018 Chaos, Solitons Fractals 114 69
[14] Li M T, Zhang R S, Hu R J, Yang F, Yao Y B and Yuan Y N 2018 Int. J. Mod. Phys. B 32 1850118
[15] Li Z, Ren T, Ma X Q, Liu S M, Zhang Y X and Zhou T 2019 Sci. Rep. 9 355
[16] Yan X L, Cui Y P and Ni S J 2020 Chin. Phys. B 29 048902
[17] Yang Y Z, Hu M and Huang T Y 2020 Chin. Phys. B 29 088903
[18] Ullah A, Wang B, Sheng J F, Long J, Khan N and Sun Z J 2021 Sci. Rep. 11 6173
[19] Ma Q and Ma J 2017 Physica A 465 312
[20] Contiguous USA network dataset — KONECT, 2017
[21] Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E and Dawson S M 2003 Behav. Ecol. Sociobiol. 54 396
[22] Blagus N, Šubelj L and Bajec M 2012 Physica A 391 2794
[23] Newman M E J 2006 Phys. Rev. E 74 036104
[24] Gleiser P M and Danon L 2003 Adv. Complex. Syst. 6 565
[25] Batagelj V and Mrvar A 1998 Connections 21 47
[26] Isella L, Stehlé J, Barrat A, Cattuto C, Pinton J F and Broeck W V 2011 J. Theor. Biol. 271 166
[27] Duch J and Arenas A 2005 Phys. Rev. E 72 027104
[28] Guimerá R, Danon L, Díaz-Guilera A, Giralt F and Arenas A 2003 Phys. Rev. E 68 065103
[29] Newman M E J 2002 Phys. Rev. Lett. 89 208701
[30] Castellano C and Pastor-Satorras R 2010 Phys. Rev. Lett. 105 218701
[31] Helton J C 1996 Reliab. Eng. Syst. Saf. 54 145
[32] Knight W R 1966 J. Am. Stat. Assoc. 61 436
[33] Chen X, Zhou J, Liao Z, Liu S and Zhang Y 2020 Entropy 22 848
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] A novel method for identifying influential nodes in complex networks based on gravity model
Yuan Jiang(蒋沅), Song-Qing Yang(杨松青), Yu-Wei Yan(严玉为),Tian-Chi Tong(童天驰), and Ji-Yang Dai(代冀阳). Chin. Phys. B, 2022, 31(5): 058903.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[7] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[10] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[11] Detection of influential nodes with multi-scale information
Jing-En Wang(王静恩), San-Yang Liu(刘三阳), Ahmed Aljmiai, and Yi-Guang Bai(白艺光). Chin. Phys. B, 2021, 30(8): 088902.
[12] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[13] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[14] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[15] Improving robustness of complex networks by a new capacity allocation strategy
Jun Liu(刘军). Chin. Phys. B, 2021, 30(1): 016401.
No Suggested Reading articles found!