Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 020503    DOI: 10.1088/1674-1056/ac0ee9
GENERAL Prev   Next  

Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks

Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦)
School of Intelligent Systems Engineering, Guangxi City Vocational University, Chongzuo 532200, China
Abstract  We investigate the dynamic event-triggered state estimation for uncertain complex networks with hybrid delays suffering from both deception attacks and denial-of-service attacks. Firstly, the effects of time-varying delays and finite-distributed delays are considered during data transmission between nodes. Secondly, a dynamic event-triggered scheme (ETS) is introduced to reduce the frequency of data transmission between sensors and estimators. Thirdly, by considering the discussed plant, dynamic ETS, state estimator, and hybrid attacks into a unified framework, this framework is transferred into a novel dynamical model. Furthermore, with the help of Lyapunov stability theory and linear matrix inequality techniques, sufficient condition to ensure that the system is exponentially stable and satisfies H performance constraints is obtained, and the design algorithm for estimator gains is given. Finally, two numerical examples verify the effectiveness of the proposed method.
Keywords:  dynamic event-triggered scheme      hybrid attacks      complex networks      state estimation  
Received:  23 May 2021      Revised:  18 June 2021      Accepted manuscript online:  28 June 2021
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Yy (Control theory)  
  07.05.Dz (Control systems)  
Corresponding Authors:  Zhongkai Mo     E-mail:  14010002@qq.com

Cite this article: 

Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦) Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks 2022 Chin. Phys. B 31 020503

[1] Sakthivel R, Sathishkumar M, Kaviarasan B and Anthoni S M 2017 Neurocomputing 238 44
[2] Zhao Z Y, Wang Z D, Zou L and Guo J Y 2020 Int. J. Syst. Sci. 51 3364
[3] Hu J, Wang Z D, Liu G P, Jia C Q and Williams J 2020 Automatica 115 108908
[4] Dong H L, Hou N, Wang Z D and Ren W J 2018 IEEE Trans. Neural. Netw. Learn. Syst. 29 2757
[5] Li W L, Jia Y M and Du J P 2017 IEEE Trans. Autom. Control 62 6377
[6] Han J, Zhang Z, Zhang X F and Zhou J P 2020 Chin. Phys. B 29 110201
[7] Yang L, Huang J, Zhang M and Yang M 2020 Int. J. Syst. Sci. 51 2999
[8] Su H S, Wu H, Chen X and Chen M Z Q 2018 IEEE Trans. Syst. Man Cybern. Syst. 48 2242
[9] Ding D, Tang Z, Wang Y and Ji Z C 2021 Appl. Math. Comput. 399 126017
[10] Wang L C, Wang Z D, Huang T W and Wei G L 2016 IEEE Trans. Cybern. 46 2497
[11] Shen B, Wang Z D, Ding D R and Shu H S 2013 IEEE Trans. Neural. Netw. Learn. Syst. 24 2027
[12] Xing W, Shi P, Agarwal R K and Li L Y 2020 IEEE Trans. Circuits Syst. I Regul. Pap. 67 5233
[13] Chen X, Yin L Y, Liu Y T and Liu H 2019 Chin. Phys. B 28 090701
[14] Wang A J, Dong T and Liao X F 2016 Neural Netw. 74 52
[15] Zhang D, Wang Q G, Srinivasan D, Li H Y and Yu L 2018 IEEE Trans. Neural. Netw. Learn. Syst. 29 1732
[16] Li Q, Shen B, Wang Z D and Alsaadi F E 2018 J. Franklin Inst. 355 2874
[17] Li N, Li Q and Suo J H 2021 Neurocomputing 421 97
[18] Pan R Q, Tan Y S, Du D S and Fei S M 2020 Neurocomputing 382 249
[19] Wan H Y, Luan X L, Karimi H R and Liu F 2021 IEEE Trans. Autom. Control 66 1353
[20] Ge X H and Han Q L 2015 Inf. Sci. 291 128
[21] Cao J, Ding D, Liu J L, Tian E G, Hu S L and Xie X H 2021 Inf. Sci. 548 69
[22] Li Q, Wang Z D, Sheng W G, Alsaadi F E and Alsaadi F E 2020 Inf. Sci. 509 304
[23] Tan Y S, Xiong M H, Zhang B Y and Fei S M 2021 IEEE Trans. Syst. Man Cybern.:Syst. pp. 2168-2216 (early access)
[24] Peng C and Sun H T 2020 IEEE Trans. Autom. Control 65 3943
[25] Kwon C and Hwang I 2016 IET Control Theory Appl. 10 731
[26] Zhu M H and Martinez S 2013 IEEE Trans. Autom. Control 59 804
[27] Persis C D and Tesi P 2015 IEEE Trans. Autom. Control 60 2930
[28] Tian E G and Peng C 2020 IEEE Trans. Cybern. 50 4610
[29] Shen B, Wang Z D, Wang D and Li Q 2020 IEEE Trans. Neural. Netw. Learn. Syst. 31 3788
[30] Hou N, Wang Z D, Ho D W C and Dong H L 2020 IEEE Trans. Cybern. 50 2793
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[5] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[6] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
No Suggested Reading articles found!