Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 114201    DOI: 10.1088/1674-1056/abf91e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film

Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
Abstract  The broadband metamaterial perfect absorber has been extensively studied due to its excellent characteristics and promising application prospect. In this work a solar broadband metamaterial perfect absorber is proposed based on the structure of the germanium (Ge) cone array and the indium arsenide (InAs) dielectric film on the gold (Au) substrate. The results show that the absorption covers the whole ultraviolet-visible and near-infrared range. For the case of A > 99%, the absorption bandwidth reaches up to 1230 nm with a wavelength range varied from 200 nm to 1430 nm. The proposed absorber is able to absorb more than 98.7% of the solar energy in a solar spectrum from 200 nm to 3000 nm. The electromagnetic dipole resonance and the high-order modes of the Ge cone couple strongly to the incident optical field, which introduces a strong coupling with the solar radiation and produces an ultra-broadband absorption. The absorption spectrum can be feasibly manipulated via tuning the structural parameters, and the polarization insensitivity performance is particularly excellent. The proposed absorber can possess wide applications in active photoelectric effects, thermion modulators, and photoelectric detectors.
Keywords:  metamaterial      electromagnetic resonance      perfect absorber      solar broadband absorption  
Received:  24 February 2021      Revised:  14 April 2021      Accepted manuscript online:  19 April 2021
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  77.55.-g (Dielectric thin films)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A030313854) and the Science and Technology Program of Guangzhou City, China (Grant No. 2019050001).
Corresponding Authors:  Hai-Ying Liu     E-mail:  hyliu@scnu.edu.cn

Cite this article: 

Kuang-Ling Guo(郭匡灵), Hou-Hong Chen(陈厚宏), Xiao-Ming Huang(黄晓明), Tian-Hui Hu(胡天惠), and Hai-Ying Liu(刘海英) Solar broadband metamaterial perfect absorber based on dielectric resonant structure of Ge cone array and InAs film 2021 Chin. Phys. B 30 114201

[1] Cai W S and Shalaev V 2009 Optical Metamaterials: Fundamentals and Applications (New York: Springer) p. 59
[2] Choy T C 2015 Effective medium theory: principles and applications (2nd edn.) (Oxford: Oxford University Press) p. 237
[3] Liu X, Tyler T, Starr T, Starr A F, Jokerst N M and Padilla W J 2011 Phys. Rev. Lett. 107 045901
[4] Fabio A, Brian K, Dragoslav G and Gamani K 2012 Opt. Express 20 21025
[5] Cumali S, Furkan D, Muharrem K, Emin U, Oguzhan A and Ekrem D 2014 Opt. Commun. 322 137
[6] Aoni R A, Mahdiraji G A, Gang S Y, Shawon M J and Adikan F R M 2016 Procedia Engineering 140 1
[7] Bakir M, Karaaslan M, Dincer F, Delihacioglu K and Sabah C 2016 J. Mater. Sci. Mater. El 27 12091
[8] Wang Z and Cheng P 2019 Int. J. Heat Mass Transfer 140 453
[9] Yin N Q, Liu L, Lei J M, Jiang T T, Zhu L X and Xu X L 2013 Chin. Phys. B 22 097502
[10] Li W and Valentinev J 2014 Nano Lett. 14 3510
[11] Atsushi I and Takuo T 2015 Sci. Rep. 5 12570
[12] Liang Q, Wang T, Lu Z, Sun Q and Yu W 2013 Adv. Opt. Mater. 1 43
[13] Bağmancı M, Karaaslan M, Unal E, Akgol O, Karadag F and Sabah C 2017 Physica E 90 1
[14] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[15] Ghandehari M B, Feiz N and Bolandpour H 2015 31st (ACES) IEEE pp. 1-2
[16] Ghandehari M B, Feiz N and Khazaei A A 2015 Int. J. Appl. Electrom. 48 77
[17] Bai R, Jin X R, Zhang Y Q, Zhang S and Youngpak L 2016 J. Nonlinear. Opt. Phys. 25 1650027
[18] Rufangura P and Sabah C 2016 IET Optoelectronics 10 211
[19] Liu Z, Liu G, Fu G, Liu X and Wang Y 2016 Opt. Express 24 5020
[20] Akselrod G M, Huang J, Hoang T B, Bowen P T, Su L, Smith D R and Mikkelsen M H 2015 Adv. Mater. 27 8028
[21] Liang Q, Fu Y, Xia X, Wang L and Gao R 2018 Mod. Phys. Lett. B 32 1750365
[22] Liu Z, Liu G, Liu X, Wang Y and Fu G 2018 Opt. Mater. 83 118
[23] Zhao Q, Zhou J, Zhang F and Lippens D 2009 Mater. Today 12 60
[24] Zhang C, Xu Y, Liu J, Li J, Xiang J, Li H, Li J, Dai Q, Lan S and Andrey E Miroshnichenko 2018 Nat. Commun. 9 1
[25] Lei S, Harris J T, Fenollosa R, Rodriguez I, Lu X, Korgel B A and Meseguer F 2013 Nat. Commun. 4 1
[26] Feng T, Xu Y, Zhang W and Miroshnichenko A E 2017 Phys. Rev. Lett. 118 173901
[27] Eberth J, Thomas H G, Brentano P, Lieder R M, Jager H M, Kammerling H, Berst M, Gutknecht D and Henck R 1996 Nucl. Instrum. Method A 369 135
[28] Duchene G, Beck F A, Twin P J, France G, Curien D, Han L, Beausang C W, Bentley M A, Nolan P J and Simpson J 1999 Nucl. Instrum. Method A 432 90
[29] Vetter K, Burks M, Cork C, Cunningham M, Chivers D, Hull E, Krings T, Manini H, Mihailescu L, Nelson K, Protic D, Valentine J and Wright D 2007 Nucl. Instrum. Method A 579 363
[30] Tommaso C, Matteo A and Schönert S 2021 The European Physical J. C 81 1
[31] Bao L, Dong X, Shum P P and Shen C 2018 Proc. SPIE 10849 18
[32] Laine J J, Stoner R E, Saltzman A J, Mccarthy T J and Smith S P 2018 U.S. Patent Application 15 403
[33] Wang X, Zhu Y J, Jiang C, Guo Y X and Zhang Z Y 2019 Opt. Express 27 20649
[34] Duan J, Huang H, Dong B, Jung D, Norman J C, Bowers J E and Grillot F 2019 IEEE Photon. Tech. Lett. 31 345
[35] Zhou X, Yu Q and Peng W 2019 Opt. Laser. Technol. 120 105686
[36] Demontis V, Rocci M, Donarelli M, Maiti R, Zannier V, Beltram F, Sorba L, Roddaro S, Rossella F and Baratto C 2019 Sensors 19 2994
[37] Weast R C 2004 Handbook of Chemistry and Physics (Florida: CRC Press) p. 1800
[38] Palik E D 1998 Handbook of Optical Constants of Solids (Boston: Academic Press) p. 189
[39] Cheng W H, Wang S C, Yang Y D, Chi S, Sheen M T and Kuang J H 1997 IEEE T. Comp. Pack. Man. 20 396
[40] Lin Y Y, Cui Y X, Ding F, Fung K H, Ji T, Li D D and Hao Y Y 2017 Opt. Mater. Express 7 606
[41] Naik G V, Schroeder J L, Ni X, Kildishev A V, Sands T D and Boltasseva A 2012 Opt. Mater. Express 2 478
[42] Liu Z, Liu G, Fu G, Liu X and Wang Y 2016 Opt. Express 24 5020
[43] Dincer F, Akgol Q, Karaaslan M, Unal E and Sabah C 2014 Prog. Electromagn. Res. 144 93
[44] Rufangura P and Sabah C 2016 IET. Optoelectron. 10 211
[1] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[4] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[5] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[6] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[7] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[8] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[9] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[10] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[11] High-efficiency unidirectional wavefront manipulation for broadband airborne sound with a planar device
Yang Tan(谭杨), Bin Liang(梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(3): 034303.
[12] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[13] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
[14] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[15] Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating
Liu-Li Wang(王刘丽), Yang Gu(顾阳), Yi-Jing Chen(陈怡静), Ya-Xian Ni(倪亚贤), and Wen Dong(董雯). Chin. Phys. B, 2022, 31(11): 118103.
No Suggested Reading articles found!