Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 106801    DOI: 10.1088/1674-1056/ac1926
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dielectrowetting actuation of droplet: Theory and experimental validation

Yayan Huang(黄亚俨)1, Rui Zhao(赵瑞)1,†, Zhongcheng Liang(梁忠诚)1,‡, Yue Zhang(张月)2, Meimei Kong(孔梅梅)1, and Tao Chen(陈陶)1
1 The Microfluidic Optical Technology Research Center, School of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;
2 Beijing Institute of Space Mechanics&Electricity, Beijing 100094, China
Abstract  A theoretical model based on energy conversation is constructed to characterize the contracting behavior of the non-conductive droplet actuated by the dielectric effect in an immiscible dielectric liquid. To verify the theory, COMSOL is employed to simulate the evolution of the droplet based on dielectrowetting, and a measurement platform is established to monitor the change process of the droplet profile. The contact angle and the height of the droplet increase linearly up to 48° and 2.03 mm respectively when U ranges from 55 V to 160 V, while the droplet remained stationary when U < 55 V. The relative experimental results coincide with the prediction of theory and the simulation analysis.
Keywords:  dielectrowetting      contact angle      height      COMSOL      droplet  
Received:  21 April 2021      Revised:  07 July 2021      Accepted manuscript online:  30 July 2021
PACS:  68.08.Bc (Wetting)  
  68.03.Hj (Liquid surface structure: measurements and simulations)  
  68.05.-n (Liquid-liquid interfaces)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61775102) and the Youth Program of the National Natural Science Foundation of China (Grant No. 61905117).
Corresponding Authors:  Rui Zhao, Zhongcheng Liang     E-mail:  zhaor@njupt.edu.cn;zcliang@njupt.edu.cn

Cite this article: 

Yayan Huang(黄亚俨), Rui Zhao(赵瑞), Zhongcheng Liang(梁忠诚), Yue Zhang(张月), Meimei Kong(孔梅梅), and Tao Chen(陈陶) Dielectrowetting actuation of droplet: Theory and experimental validation 2021 Chin. Phys. B 30 106801

[1] Murphy T W, Zhang Q, Naler L B, Ma S and Lu C 2018 Analyst 143 60
[2] Li J 2020 Lab on a Chip 20 1705
[3] Cui P and Wang S 2019 Journal of Pharmaceutical Analysis 9 238
[4] Grigoriev R O 2005 Phys. Fluids 17 033601
[5] Hongbin Y, Guangya Z, Siong C F and Feiwen L 2008 Journal of Micromechanics and Microengineering 18 115016
[6] Geng H, Feng J, Stabryla L M and Cho S K 2017 Lab on a Chip 17 1060
[7] Edwards A M J, Brown C V, Newton M I and McHale G 2018 Current Opinion in Colloid & Interface Science 36 28
[8] Zhao R, Cumby B, Russell A and Heikenfeld J 2013 Appl. Phys. Lett. 104 019901
[9] Ashtiani A O and Jiang H 2017 Journal of Microelectromechanical Systems 26 305
[10] Kedzierski J, Berry S and Abedian B 2009 Journal of Microelectromechanical Systems 18 845
[11] Chen T and Liang Z 2010 Optoelectronic Devices and Integration Ⅲ. International Society for Optics and Photonics 7847 78472
[12] Takei A, Iwase E, Hoshino K, Matsumoto K and Shimoyama I 2007 Journal of Microelectromechanical Systems 16 1537
[13] Park I S, Park Y, Oh S H, Yang W J and Chung S K 2018 Sensors and Actuators A: Physical 273 317
[14] You H and Steckl A J 2010 Appl. Phys. Lett. 97 023514
[15] Chung S K, Zhao Y and Cho S K 2008 Journal of Micromechanics and Microengineering 18 095009
[16] Yuan R Y, Luo L, Wang J H, Li L and Wang H 2018 IEEE Photon. Technol. Lett. 30 1629
[17] Zhao R and Liang Z C 2016 Chin. Phys. B 25 066801
[18] Zeng X F, Yue R F, Wu J G, Dong L and Liu L T 2006 Chin. Phys. Lett. 21 1851
[19] Yue R F, Wu J G, Zeng X F, Kang M and Liu L T 2006 Chin. Phys. Lett. 23 2303
[20] Quinn A, Sedev R and Ralston J 2005 J. Phys. Chem. B 109 6268
[21] Nelson W C, Sen P and Kim C J 2011 Langmuir 27 10319
[22] Vallet M, Berge B and Vovelle L 1996 Polymer. 37 2465
[23] Cheng C C, Chang C A and Yeh J A 2006 Opt. Express 14 4101
[24] Tsai C G and Yeh J A 2010 Opt. Lett. 35 2484
[25] McHale G, Brown C V, Newton M I, Wells G G and Sampara N 2011 Phys. Rev. Lett. 107 186101
[26] Kim D, Park Y, Lee D Y and Chung S K 2018 IEEE Micro-Electro Mechanical Systems (MEMS) pp. 585-587
[27] Liang Z C, Ding W X, Zhao R, Huang Y Y, Kong M M and Chen T 2021 Langmuir 37 769
[28] Bizonne C C, Barrat J L, Bocquet L and Charlaix E 2003 Nat. Materi. 2 237
[29] Cox R G 2006 J. Fluid Mech. 168 169
[30] Burkhart C T, Maki K L and Schertzer M J 2020 Langmuir 36 8129
[31] Yi U C and Kim C J 2006 Journal of Micromechanics and Microengineering 16 2053
[32] Young T 1805 Phil. Trans. Roy. Soc. London 95 65
[33] Ren H, Fair R B, Pollack M G and Shaughnessy E J 2002 Sensors and Actuators B: Chemical 87 201
[34] Lin J L, Lee G B, Chang Y H and Lien K Y 2006 Langmuir 22 484
[35] Cottin-Bizonne C, Barrat J L, Bocquet L and Charlaix E 2003 Nat Mater 2 237
[36] McHale G, Brown C V and Sampara N 2013 Nat. Commun. 4 1605
[37] Zhao Y P and Yuan Q 2015 Nanoscale. 7 2561
[38] Chang J H and Park J J 2012 J. Adhesion Sci. Technol. 26 2105
[39] Yang C Y, Ho F H, Wang P J and Yeh J A 2010 Langmuir 26 6314
[1] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[2] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
[3] Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
Zhongyu Shi(石中玉), Guanqing Wang(王关晴), Xiangxiang Chen(陈翔翔), Lu Wang(王路), Ning Ding(丁宁), and Jiangrong Xu(徐江荣). Chin. Phys. B, 2022, 31(5): 054701.
[4] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[5] Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility
Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
[6] Numerical simulation on partial coalescence of a droplet with different impact velocities
Can Peng(彭灿), Xianghua Xu(徐向华), and Xingang Liang(梁新刚). Chin. Phys. B, 2021, 30(5): 054703.
[7] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[8] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[9] Effect of the liquid temperature on the interaction behavior for single water droplet impacting on the immiscible liquid
Tiantian Wang(汪甜甜), Changjian Wang(王昌建), Shengchao Rui(芮圣超), and Kai Pan(泮凯). Chin. Phys. B, 2021, 30(11): 116801.
[10] Molecular simulation study of the adhesion work for water droplets on water monolayer at room temperature
Mengyang Qu(屈孟杨), Bo Zhou(周波), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(10): 106804.
[11] Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs
Zhi-Hang Tong(童志航), Peng Ding(丁芃), Yong-Bo Su(苏永波), Da-Hai Wang(王大海), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(1): 018501.
[12] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[13] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[14] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[15] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
No Suggested Reading articles found!