Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells
Fei Qi(齐飞)1,2, Bo Wu(吴波)1,2, Junyuan Xu(徐俊源)1,2, Qian Chen(陈潜)1,2, Haiquan Shan(单海权)1,2, Jiaju Xu(许家驹)1,2,†, and Zong-Xiang Xu(许宗祥)1,2,‡
1 Department of Chemistry, Southern University of Science and Technology, Shenzhen 518000, China; 2 Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518000, China
Abstract This report presents two non-perihperally octaalkyl-substituted nickel phthalocyanines (NiPcs), namely, NiEt2Pc and NiPr2Pc, for use as dopant-free hole transport materials in perovskite solar cells (PSCs). The length extension of the alkyl chains from ethyl to propyl significantly tunes the NiPcs' energy levels, thus reducing charge carrier recombination at the perovskite/hole transport layer (HTL) interface and leading to higher open-circuit voltage (VOC) and short-circuit current density (JSC) observed for the NiPr2Pc-based PSC. And higher charge carrier mobility, higher thin film crystallinity, and lower surface roughness of the NiPr2Pc HTL compared with that of the NiEt2Pc one also lead to higher JSC and fill factor (FF) observed for the NiPr2Pc-based device. Consequently, the NiPr2Pc-based PSC exhibits a higher power conversion efficiency (PCE) of 14.07% than that of the NiEt2Pc-based device (8.63%).
(Methods of materials synthesis and materials processing)
Fund: Project supported by the Shenzhen Overseas High-level Talents Innovation Plan of Technical Innovation (Grant No. KQJSCX20180323140712012) and the Major Program of Guangdong Basic and Applied Research (Grant No. 2019B121205001).
Fei Qi(齐飞), Bo Wu(吴波), Junyuan Xu(徐俊源), Qian Chen(陈潜), Haiquan Shan(单海权), Jiaju Xu(许家驹), and Zong-Xiang Xu(许宗祥) Non-peripherally octaalkyl-substituted nickel phthalocyanines used as non-dopant hole transport materials in perovskite solar cells 2021 Chin. Phys. B 30 108801
[1] Li C, Hu Q K, Chen Q, Yu W J, Xu J J and Xu Z X 2021 Org. Electron.88 106018 [2] Kabir I and Mahmood S A 2019 Chin. Phys. B28 128801 [3] Tian J Li H Wang H Zheng B Xue Y Liu X 2018 Chin. Phys. B27 18810 [4] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc.131 6050 [5] Tu Y, Wu J, Xu G, Yang X, Cai R, Gong Q, Zhu R and Huang W 2021 Adv. Mater.33 2006545 [6] Bakr Z H, Wali Q, Fakharuddin A, Schmidt-Mende L, Brown T M and Jose R 2017 Nano Energy34 271 [7] Ameen S, Rub M A, Kosa S A, Alamry K A, Akhtar M S, Shin H S, Seo H K, Asiri A M and Nazeeruddin M K 2016 ChemSusChem9 10 [8] Rezaee E, Liu X, Hu Q, Dong L, Chen Q, Pan J H and Xu Z X 2018 Solar RRL2 1800200 [9] Yang G, Wang Y L, Xu J J, Lei H W, Chen C, Shan H Q, Liu X Y, Xu Z X and Fang G J 2017 Nano Energy31 322 [10] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon.13 460 [11] Reddy G, Devulapally K, Islavath N and Giribabu L 2019 Chem. Rec.19 2157 [12] Wang Y, Ye W, Yang X, Rezaee E, Shan H, Yang S, Cai S, Pan J H, Xu J and Xu Z X 2020 Synth. Met.259 116248 [13] Seo J, Jeon N J, Yang W S, Shin H W, Ahn T K, Lee J, Noh J H and Seok S I 2015 Adv. Energ. Mater.5 1501320 [14] Dao Q D, Fujii A, Tsuji R, Takeoka Y and Ozaki M 2017 Org. Electron.43 156 [15] Wang Y, Liu X, Shan H, Chen Q, Liu T, Sun X, Ma D, Zhang Z, Xu J and Xu Z X 2017 Dyes Pigm.139 619 [16] Feng Y, Hu Q, Rezaee E, Li M, Xu Z X, Lorenzoni A, Mercuri F and Muccini M 2019 Adv. Energy Mater.9 1901019 [17] Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W and Liu X 2014 Chem. Soc. Rev.43 3259 [18] Shan H, Wang Y, Li C, Hu Q, Sun X, Dong L, Feng Y, Ye W, Xu J and Xu Z X 2018 Org. Electron.58 197 [19] Wang Y L, Shan H Q, Sun X Z, Dong L, Feng Y M, Hu Q K, Ye W K, Roy V A L, Xu J J and Xu Z X 2018 Org. Electron.55 15 [20] Zheng L P, Xu J J, Feng Y M, Shan H Q, Fang G J and Xu Z X 2018 J. Mater. Chem. C6 11471 [21] Chen Q, Yang S, Dong L, Cai S, Xu J and Xu Z 2019 Chin. Phys. B29 017302 [22] Hu Q, Rezaee E, Dong L, Dong Q, Shan H, Chen Q, Li M, Cai S, Wang L and Xu Z X Solar RRL0 1900182 [23] Xu J J, Wang Y L, Shan H Q, Lin Y W, Chen Q, Roy V A L and Xu Z X 2016 ACS Appl. Mater. Interfaces8 18991 [24] Xu J J, Wang Y L, Chen Q, Lin Y W, Shan H Q, Roy V A L and Xu Z X 2016 J. Mater. Chem. C4 7377 [25] Xu Z X, Roy V A L, Low K H and Che C M 2011 Chem. Commun.47 9654 [26] Hu Q, Rezaee E, Dong Q, Shan H, Chen Q, Wang L, Liu B, Pan J H and Xu Z X 2019 Solar RRL3 1800264 [27] Ghani F, Kristen J and Riegler H 2012 J. Chem. Eng. Data57 439 [28] Hu Q, Rezaee E, Li M, Chen Q, Cao Y, Mayukh M, McGrath D V and Xu Z X 2019 ACS Appl. Mater. Interfaces11 36535 [29] Wang Y, Zheng X, Liu X, Feng Y, Shan H, Dong L, Fang G and Xu Z X 2018 Org. Electron.56 276 [30] Zheng X, Wang Y, Hu J, Yang G, Guo Z, Xia J, Xu Z and Fang G 2017 J. Mater. Chem. A5 24416 [31] Liu X, Wang Y, Rezaee E, Chen Q, Feng Y, Sun X, Dong L, Hu Q, Li C and Xu Z X 2018 Solar RRL2 1800050 [32] Zhang C, Lu Y N, Wu W Q and Wang L 2021 Nano Energy81 105634 [33] Wetzelaer G J A H, Scheepers M, Sempere A M, Momblona C, Ávila J and Bolink H J 2015 Adv. Mater.27 1837 [34] Qin P L, He Q, Chen C, Zheng X L, Yang G, Tao H, Xiong L B, Xiong L, Li G and Fang G J 2017 Solar RRL1 1700058
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.