Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100302    DOI: 10.1088/1674-1056/abff1c
GENERAL Prev   Next  

Detection of spin current through a quantum dot with Majorana bound states

Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧)
School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China
Abstract  The spin transport properties are theoretically investigated when a quantum dot (QD) is side-coupled to Majorana bound states (MBSs) driven by a symmetric dipolar spin battery. It is found that MBSs have a great effect on spin transport properties. The peak-to-valley ratio of the spin current decreases as the coupling strength between the MBS and the QD increases. Moreover, a non-zero charge current with two resonance peaks appears in the system. In the extreme case where the dot-MBS coupling strength is strong enough, the spin current and the charge current are both constants in the non-resonance peak range. When considering the effect of the Zeeman energy, it is interesting that the resonance peak at the higher energy appears one shoulder. And the shoulder turns into a peak when the Zeeman energy is big enough. In addition, the coupling strength between the two MBSs weakens their effects on the currents of the system. These results are helpful for understanding the MBSs signature in the transport spectra.
Keywords:  Majorana bound states      quantum dot      spin current      Green's function  
Received:  23 December 2020      Revised:  19 April 2021      Accepted manuscript online:  08 May 2021
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  73.63.Kv (Quantum dots)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  74.78.Na (Mesoscopic and nanoscale systems)  
Fund: Project supported by Natural Science Fund for Colleges and Universities in Hebei Province, China (Grant No. ZD2017031) and the Doctoral Initial Funding of Hebei University of Science and Technology (Grant No. 1181291).
Corresponding Authors:  Shuhui Lv     E-mail:

Cite this article: 

Ning Wang(王宁), Xingtao An(安兴涛), and Shuhui Lv(吕树慧) Detection of spin current through a quantum dot with Majorana bound states 2021 Chin. Phys. B 30 100302

[1] Alicea J, Oreg Y, Refael G, von Oppen F and Fisher M P A 2011 Nat. Phys. 7 412
[2] Wilczek F 2009 Nat. Phys. 5 614
[3] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[4] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[5] Aguado R 2017 Nuovo Cimento 40 523
[6] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[7] Sato M, Takahashi Y and Fujimoto S 2010 Phys. Rev. B 82 134521
[8] Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A and Yazdani A 2014 Science 346 602
[9] Ruby M, Heinrich B W, Peng Y, von Oppen F and Franke K J 2017 Nano Lett. 17 4473
[10] Park S and Recher P 2015 Phys. Rev. Lett. 115 246403
[11] Scharf B, Pientka F, Ren H, Yacoby A and Hankiewicz E M 2019 Phys. Rev. B 99 214503
[12] Pang Y, Wang J H, Lyu Z Z, Yang G, Fan J, Liu G T, Ji Z Q, Jing Z N, Yang C L and Lu L 2016 Chin. Phys. B 25 117402
[13] Nichele F, Drachmann A C C, Whiticar A M, O'Farrell E C T, Suominen H J, Fornieri A, Wang T, Gardner G C, Thomas C, Hatke A T, Krogstrup P, Manfra M J, Flensberg K and Marcus C M 2017 Phys. Rev. Lett. 119 136803
[14] Zhang H, Liu C X, Gazibegovic S, Xu D, Logan J A, Wang G, van Loo N, Bommer J D S, de Moor M W A, Car D, het Veld R L M O, van Veldhoven P J, Koelling S, Verheijen M A, Pendharkar M, Pennachio D J, Shojaei B, Lee J S, Palmstrøm C J, Bakkers E P A Sarma M S D and Kouwenhoven L P 2018 Nature 556 74
[15] Laroche D, Bouman D, van Woerkom D J, Proutski A, Murthy C, Pikulin D I, Nayak C, van Gulik R J J, Nygård J, Krogstrup P, Kouwenhoven L P and Geresdi A 2019 Nat. Commun. 10 245
[16] Liu J, Li K M, Chi F, Fu Z G and Zhang P 2020 Chin. Phys. B 29 077302
[17] Liu D E and Baranger H U 2011 Phys. Rev. B 84 201308
[18] Wang N, Lv S H and Li Y X 2014 J. Appl. Phys. 115 083706
[19] Sticlet D, Sau J D and Akhmerov A 2018 Phys. Rev. B 98 125124
[20] Frombach D and Recher P 2020 Phys. Rev. B 101 115304
[21] Li C A, Li J and Shen S Q 2019 Phys. Rev. B 99 100504
[22] Yang F B 2019 Phys. E 109 164
[23] Schuray A, Rammler M and Recher P 2020 Phys. Rev. B 102 045303
[24] Weymann I and Wójcik K P 2017 Phys. Rev. B 95 155427
[25] Lee M, Lim J S and López R 2013 Phys. Rev. B 87 241402
[26] Leijnse M and Flensberg K 2011 Phys. Rev. B 84 140501
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!