|
|
High winding number of topological phase in non-unitary periodic quantum walk |
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚)† |
Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Topological phases and their associated multiple edge states are studied by constructing a one-dimensional non-unitary multi-period quantum walk with parity-time symmetry. It is shown that large topological numbers can be obtained when choosing an appropriate time frame. The maximum value of the winding number can reach the number of periods in the one-step evolution operator. The validity of the bulk-edge correspondence is confirmed, while for an odd-period quantum walk and an even-period quantum walk, they have different configurations of the 0-energy edge state and π-energy edge state. On the boundary, two kinds of edge states always coexist in equal amount for the odd-period quantum walk, however three cases including equal amount, unequal amount or even only one type may occur for the even-period quantum walk.
|
Received: 07 January 2021
Revised: 10 March 2021
Accepted manuscript online: 07 April 2021
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
05.40.Fb
|
(Random walks and Levy flights)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12004231). |
Corresponding Authors:
Zhi-Jian Li
E-mail: zjli@sxu.edu.cn
|
Cite this article:
Yali Jia(贾雅利) and Zhi-Jian Li(李志坚) High winding number of topological phase in non-unitary periodic quantum walk 2021 Chin. Phys. B 30 100301
|
[1] Aharonov Y, Davidovich L and Zagury N 1993 Phys. Rev. A 48 1687 [2] Kempe J 2003 Contemp. Phys. 44 307 [3] Venegas-Andraca E S 2012 Quantum Inf. Proc. 11 1015 [4] Tang B, Qin H, Zhang R, Liu J M and Xue P 2014 Chin. Phys. B 23 050307 [5] Shenvi N, Kempe J and Birgitta Whaley K 2003 Phys. Rev. A 67 052307 [6] Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429 [7] Kurzyński P and Wójcik A 2011 Phys. Rev. A 83 062315 [8] Kitagawa T et al. 2010 Phys. Rev. A 82 033429 [9] Groh T, Brakhane S, Alt W et al. 2016 Phys. Rev. A 94 013620 [10] Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501 [11] Rakovszky T and Asboth J K 2015 Phys. Rev. A 92 052311 [12] Panahiyan S and Fritzsche S 2019 Phys. Rev. A 100 062115 [13] Du J, Li H, Xu X, Shi M, Wu J, Zhou X and Han R 2003 Phys. Rev. A 67 042316 [14] Ryan C A, Laforest M, Boileau J C and Laflamme R, E 2005 Phys. Rev. A 72 062317 [15] Lu D W et al. 2016 Phys. Rev. A 93 042302 [16] Genske M, Alt W, Steffen A, Werner A H, Werner R F, Meschede D and Alberti A 2013 Phys. Rev. Lett. 110 190601 [17] Robens C, Alt W, Meschede D, Emary C and Alberti A 2015 Phys. Rev. X 5 011003 [18] Peruzzo A et al. 2010 Science 329 1500 [19] Xue P, Qin H, Tang B, Zhan X, Bian Z H and Li J 2014 Chin. Phys. B 13 110307 [20] Schreiber A et al. 2011 Phys. Rev. Lett. 106 180403 [21] Jeong Y C, Franco C D, Lim H T, Kim M S and Kim Y H 2013 Nat. Commun. 4 2471 [22] Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Phys. Rev. Lett. 115 040402 [23] Zhan X, Xiao L, Bian Z H, Wang K K, Qiu X Z, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501 [24] Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117 [25] Zhang R, Liu Y F and Chen T 2020 Phys. Rev. A 102 022218 [26] Weimann S, Kremer M, Plotnik Y, Lumer Y, Nolte S, K, Makris K G, Segev M, Rechtsman M C and Szameit A 2017 Nat. Mater. 16 433 [27] Poli C, Bellec M, Kuhl U, Mortessagne F and Schomerus H 2015 Nat. Commun. 6 6710 [28] Asboth J K 2013 Phys. Rev. B 88 121406 [29] Tarasinski B, Asboth J K and Dahlhaus J P 2014 Phys. Rev. A 89 042327 [30] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079 [31] Kawabata K, Shiozaki K and Ueda M and Sato M 2018 Phys. Rev. X 9 041015 [32] Xiao L, Qiu X, Wang K K, Bian Z, Zhan X, Obuse H, Sanders B C, Yi W and Xue P 2018 Phys. Rev. A 98 063847 [33] El-Ganainy R, Markris K G, Khajavikhan M et al. 2018 Nat. Phys. 10 1038 [34] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|