|
|
Measurement-device-independent quantum dialogue |
Guo-Fang Shi(石国芳)† |
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710061, China |
|
|
Abstract Recently, measurement-device-independent quantum secure direct communication schemes were proposed by Niu et al. [Sci. Bull. 63 1345 (2018)] and Zhou et al. [Sci. China-Phys. Mech. Astron. 63 230362 (2020)]. Inspired by their ideas, in this paper, a measurement-device-independent quantum dialogue protocol based on entanglement is designed and proven to be secure. The advantage of this scheme is that it can not only allow two communicators to transmit secret messages between each other, making the application scenarios more extensive, but can also eliminate all the security loopholes related to the measurement device and information leakage. In terms of experimental implementation, the scheme mainly involves the preparation of entangled states, the preparation of single photons, quantum storage, Bell measurement and other technologies, all of which are mature at present, therefore, the scheme is feasible by using current technologies.
|
Received: 23 April 2021
Revised: 20 June 2021
Accepted manuscript online: 14 July 2021
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
Corresponding Authors:
Guo-Fang Shi
E-mail: 55310518@qq.com
|
Cite this article:
Guo-Fang Shi(石国芳) Measurement-device-independent quantum dialogue 2021 Chin. Phys. B 30 100303
|
[1] Bennett C H and Brassard G 1984 Proc. Int. Conf. on Computers, Systems & Signal Processing, Bangalore, India, IEEE, New York p. 175 [2] Ekert A K 1991 Phys. Rev. Lett. 67 661 [3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557 [4] Fung C H F, Qi B, Tamaki K and Lo H K 2007 Phys. Rev. A 75 032314 [5] Xu F H, Qi B and Lo H K 2010 New J. Phys. 12 113026 [6] Zhao Y, Fung C H F, Qi B, Chen C and Lo H K 2008 Phys. Rev. A 78 042333 [7] Lydersen L, Wiechers C, Wittmann C, Elser D, Skaar J and Makarov V 2010 Nat. Photon. 4 686 [8] Meda A, Degiovanni I P, Tosi A, Yuan Z, Brida G and Genovese M 2017 Light. Sci. Appl. 6 e16261 [9] Lo H K, Curty M and Qi B 2012 Phys. Rev. Lett. 108 130503 [10] Sun S H, Gao M, Li C Y and Liang L M 2013 Phys.Rev. A. 87 052329 [11] Xu F H, Curty M, Qi B and Lo H K 2013 New. Jour. Phys. 15 113007 [12] Cui Z X, Zhong W, Zhou L and Sheng Y B 2019 Sci. China-Phys. Mech. Astron. 62 110311 [13] Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902 [14] Long G L and Liu X S 2002 Phys. Rev. A 65 032302 [15] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317 [16] Deng F G and Long G L 2004 Phys. Rev. A 69 052319 [17] Chen S S, Zhou L, Zhong W and Sheng Y B 2018 Sci. China-Phys. Mech. Astron. 61 090312 [18] Li T and Long G L 2020 New J. Phys. 22 063017 [19] Liu D, Chen J L and Jiang W 2012 Int. J. Theor. Phys. 51 2923 [20] Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15 [21] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309 [22] Nguyen B A 2004 Phys. Lett. A 328 6 [23] Gao F, Guo F Z, Wen Q Y and Zhu F C 2008 Sci. China Ser. G Phys. Mech. Astron. 51 559 [24] Tan Y G and Cai Q Y 2008 Int. J. Quant. Inf. 6 325 [25] Shi G F, Xi X Q, Tian X L and Yue R H 2009 Opt. Commun. 282 2460 [26] Shi G F, Xi X Q, Hu M L and Yue R H 2010 Opt. Commun. 283 1984 [27] Arpita M 2017 Quantum. Inf. Process. 16 305 [28] Niu P H, Zhou Z R, Lin Z S, Sheng Y B, Liu G Y and Long G L 2018 Sci. Bull. 63 1345 [29] Zhou Z R, Sheng Y B, Niu P H, Liu G Y, Long G L and Hanzo L 2020 Sci. China-Phys. Mech. Astron. 63 230362 [30] Li T, Miranowicz A, Hu X D, Xia K Y and Nori F 2018 Phys. Rev. A. 97 062318 [31] Song G Z, Munro E, Nie W, Kwek L C, Deng F G and Long G L 2018 Phys. Rev. A 98 023814 [32] Qin W, Miranowicz A, Li P B, Lü X Y, You J Q and Nori F 2018 Phys. Rev. Lett. 120 093601 [33] Cabello A 2000 Phys. Rev. Lett. 85 5635 [34] Zhang W, Ding D S, ShengY B, Zhou L, Shi B S and Guo G C 2017 Phys. Rev. Lett. 118 220501 [35] Zhu F, Zhang W, Sheng Y B and Huang Y 2017 Sci. Bull. 62 1519 [36] Cao Y, Li Y H, Yang K X, Jiang Y F, Li S L, Hu X L, Abulizi M, Li C L, Zhang W J, Sun Q C, Liu W Y, Jiang X, Liao S K, Ren J G, Li H, You L X, Wang Z, Yin J, Lu C Y, Wang X B, Zhang Q, Peng C Z and Pan J W 2020 Phys. Rev. Lett. 125 260503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|