Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097805    DOI: 10.1088/1674-1056/ac0818

Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer

Junhui Huang(黄君辉)1,2, Hao Chen(陈昊)1,2, Zhiyao Zhuo(卓志瑶)1,2, Jian Wang(王健)1,2, Shulun Li(李叔伦)1,2, Kun Ding(丁琨)1,2, Haiqiao Ni(倪海桥)1,2, Zhichuan Niu(牛智川)1,2,3, Desheng Jiang(江德生)1, Xiuming Dou(窦秀明)1,2,†, and Baoquan Sun(孙宝权)1,2,3,‡
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
Abstract  A very long lifetime exciton emission with non-single exponential decay characteristics has been reported for single InA-s/GaAs quantum dot (QD) samples, in which there exists a long-lived metastable state in the wetting layer (WL) through radiative field coupling between the exciton emissions in the WL and the dipole field of metal islands. In this article we have proposed a new three-level model to simulate the exciton emission decay curve. In this model, assuming that the excitons in a metastable state will diffuse and be trapped by QDs, and then emit fluorescence in QDs, a stretched-like exponential decay formula is derived as $I\left( t \right)=A\, t^{\beta -1}{\rm e}^{-\left( rt \right)^{\beta }}$, which can describe well the long lifetime decay curve with an analytical expression of average lifetime $\langle\tau\rangle=\frac{1}{r}\mathrm{\Gamma } ( \frac{1}{\beta }+1 )$,where $\Gamma $ is the Gamma function. Furthermore, based on the proposed three-level model, an expression of the second-order auto-correlation function $g^{2}\left( t \right)$ which can fit the measured $g^{2}\left( t \right)$ curve well, is also obtained.
Keywords:  quantum dots      collective excitations      charge carriers      time resolved spectroscopy  
Received:  07 May 2021      Revised:  01 June 2021      Accepted manuscript online:  04 June 2021
PACS:  78.67.Hc (Quantum dots)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  73.50.Gr (Charge carriers: generation, recombination, lifetime, trapping, mean free paths)  
  78.47.D- (Time resolved spectroscopy (>1 psec))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301202) and the National Natural Science Foundation of China (Grant Nos. 61827823 and 11974342).
Corresponding Authors:  Xiuming Dou, Baoquan Sun     E-mail:;

Cite this article: 

Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权) Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer 2021 Chin. Phys. B 30 097805

[1] Purcell E M 1946 Phys. Rev. 69 681
[2] Mie G 1908 Ann. Phys. 330 377
[3] García-Vidal F J and Pendry J B 1996 Phys. Rev. Lett. 77 1163
[4] ElKabbash M, Miele E, Fumani A K, Wolf M S, Bozzola A, Haber E, Shahbazyan T V, Berezovsky J, De Angelis F and Strangi G 2019 Phys. Rev. Lett. 122 203901
[5] Wang H Y, Su D, Yang S, Dou X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L and Sun B Q 2015 Chin. Phys. Lett. 32 107804
[6] Drexhage K H 1974 Prog. Opt. 12 165
[7] Chen H, Huang J H, He X W, Ding K, Ni H Q, Niu Z C, Jiang D S, Dou X M and Sun B Q 2020 ACS Photonics 7 3228
[8] Lodahl P, van Driel A F, Nikolaev I S, Irman A, Overgaag K, Vanmaekelbergh D and Vos W L 2004 Nature 430 654
[9] Nirmal M, Norris D J, Kuno M, Bawendi M G, Efros A L and Rosen M 1995 Phys. Rev. Lett. 75 3728
[10] Wang X B, Yan L L, Li Y and Li X J 2015 Chin. Phys. Lett. 32 097802
[11] Brosseau C N, Perrin M, Silva C and Leonelli R 2010 Phys. Rev. B 82 085305
[12] Nikolaev I S, Lodahl P, van Driel A F, Koenderink A F and Vos W L 2007 Phys. Rev. B 75 115302
[13] Sturman B, Podivilov E and Gorkunov M 2003 Phys. Rev. Lett. 91 176602
[14] Aydiner E 2077 Chin. Phys. Lett. 24 1486
[15] Potuzak K, Welch R C and Mauro J C 2011 J. Chem. Phys. 135 214502
[16] Yu Y, Shang X J, Li M F, Zha G W, Xu J X, Wang L J, Wang G W, Ni H Q, Dou X M, Sun B Q and Niu Z C 2013 Appl. Phys. Lett. 102 201103
[17] Pan S J, Cao V, Liao M Y, Lu Y, Liu Z Z, Tang M C, Chen S M, Seeds A and Liu H Y 2019 J. Semicond. 40 101302
[18] Dalgarno P A, Smith J M, McFarlane J, Gerardot B D, Karrai K, Badolato A, Petroff P M and Warburton R J 2008 Phys. Rev. B 77 245311
[19] Yang J Z, Zopf M and Ding F 2020 J. Semicond. 41 011901
[20] Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290
[21] Kakalios J, Street R and Jackson W 1987 Phys. Rev. Lett. 59 1037
[22] Kitson S, Jonsson P, Rarity J and Tapster P 1998 Phys. Rev. A 58 620
[23] Wu E, Jacques V, Zeng H P, Grangier P, Treussart F and Roch J F 2006 Opt. Express 14 1296
[24] Reynaud S 1983 Ann. Phys. 8 315
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[5] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[8] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[11] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[12] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[13] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[14] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
[15] Zebrafish imaging and two-photon fluorescence imaging using ZnSe quantum dots
Nan-Nan Zhang(张楠楠), Li-Ya Zhou(周立亚), Xiao Liu(刘潇), Zhong-Chao Wei(韦中超), Hai-Ying Liu(刘海英), Sheng Lan(兰胜), Zhao Meng(孟钊), and Hai-Hua Fan(范海华). Chin. Phys. B, 2021, 30(4): 044204.
No Suggested Reading articles found!