Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087102    DOI: 10.1088/1674-1056/ac04a5
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz

Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃)
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  Ultra-thin barrier (UTB) 4-nm-AlGaN/GaN normally-off high electron mobility transistors (HEMTs) having a high current gain cut-off frequency (fT) are demonstrated by the stress-engineered compressive SiN trench technology. The compressive in-situ SiN guarantees the UTB-AlGaN/GaN heterostructure can operate a high electron density of 1.27×1013cm-2, a high uniform sheet resistance of 312.8 Ω /□, but a negative threshold for the short-gate devices fabricated on it. With the lateral stress-engineering by full removing in-situ SiN in the 600-nm SiN trench, the short-gated (70 nm) devices obtain a threshold of 0.2 V, achieving the devices operating at enhancement-mode (E-mode). Meanwhile, the novel device also can operate a large current of 610 mA/mm and a high transconductance of 394 mS/mm for the E-mode devices. Most of all, a high fT/fmax of 128 GHz/255 GHz is obtained, which is the highest value among the reported E-mode AlGaN/GaN HEMTs. Besides, being together with the 211 GHz/346 GHz of fT/fmax for the D-mode HEMTs fabricated on the same materials, this design of E/D-mode with the realization of fmax over 200 GHz in this work is the first one that can be used in Q-band mixed-signal application with further optimization. And the minimized processing difference between the E- and D-mode designs the addition of the SiN trench, will promise an enormous competitive advantage in the fabricating costs.
Keywords:  ultra-thin barrier (UTB)      AlGaN/GaN      in-situ SiN      stress-engineering      enhancement-mode      mixed-signal applications  
Received:  06 April 2021      Revised:  01 May 2021      Accepted manuscript online:  25 May 2021
PACS:  71.55.Eq (III-V semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB1804902), the National Natural Science Foundation of China (Grant No. 61904135), the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and BX20200262), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JQ-316).
Corresponding Authors:  Minhan Mi     E-mail:  miminhan@qq.com

Cite this article: 

Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃) High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz 2021 Chin. Phys. B 30 087102

[1] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 Electron Dev. Lett. 31 195
[2] Wu S B, Gao J F, Wang W B and Zhang J Y 2016 Trans. Electron Dev. 63 3882
[3] Corrion A L, Shinohara K, Regan D, Milosavljevic I, Hashimoto P, Willadsen P. J, Schmitz A, Wheeler D C, Butler C M, Brown D, Burnham S D and Micovic M 2010 Electron Dev. Lett. 31 1116
[4] Hu Z Y, Yue Y Z, Zhu M D Zhu, Song B, Ganguly S, Bergman J, Jena D and Xing H L 2014 Appl. Phys. Express 7 031002
[5] Han P C, Wu C H, Ho Y H, Yan Z Z and Chang E Y 2019 Proceedings of the 31st Intenational Symposium on Power Semiconductor Device & ICs, May 19-23, 2019, Shanghai, China, p. 427
[6] Wen Y H, He Z Y, Li J L, Luo R H, Xiang P, Deng Q Y, Xu G N, Shen Z, Wu Z S, Zhang B J, Jiang H, Wang G and Liu Y 2011 Appl. Phys. Lett. 98 072108
[7] Wan R H, Liu X, Lian C X, Gao X, Guo S P, Snider G, Fay P, Jena D and Xing H L 2010 Electron Dev. Lett. 31 1383
[8] Cheng Z, Zhang Y, Zhang L, Zhao Y B, Wang J X and Li J M 2016 13th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors, January 5-12, 2017, Beijing, China, p. 72
[9] Huang S, Liu X Y, Wang X H, Kang X W, Zhang J H, Bao Q L, Wei K, Zheng Y K, Zhao C, Gao H W, Sun Q, Zhang Z F and Chen K J 2016 Electron Dev. Lett. 37 1617
[10] Derluyn J, Boeykens S, Cheng K, Vandersmissen R, Das J, Ruythooren W, Degroote S, Leys M R, Germain M and Borghs G 2005 J. Appl. Phys. 98 054501
[11] Dogmus E, Kabouche R, Linge A, Okada E, Zegaoui M and Medjdoub F 2017 Phys. Status Solidi A 214 1600797
[12] Cheng W C, Lei S Q, Li W M, Zhao F, Chan M and Yu H Y 2019 Electron Devices Technology and Manufacturing Conference, March 12-15, 2019, Singapore, p. 19739002
[13] Cheng W C, Fang T, Lei S Q, Zhao Y L, He M H, Chan M, Xia G R, Zhao F and Yu H Y 2019 IEEE International Conference on Electron Devices and Solid-State Circuits, July 12-14, 2019, Xi'an China, p. 18864091
[14] Kuball M 2001 Surf. Interface Anal. 31 987
[15] Endoh A, Yamashita Y, Ikeda K, Higashiwaki M, Hikosaka K, Matsui T, Hiyamizu S and Mimura T 2004 Jpn. J. Appl. Phys. 43 2255
[16] Lanford W B, Tanaka T, Otoki Y and Adesida I 2005 Electron. Lett. 7 449
[17] Palacios T, Chakraborty C S Sus, Chakraborty A, Keller S, DenBaars S P and Mishra U K 2006 Electron Dev. Lett. 6 428
[18] Higashiwaki M, T Mimura T and Matsui T 2007 Trans. Electron Dev. 54 1566
[19] Maroldt S, Haupt C, Pletschen W, Muller S, Quay R, Ambacher O, Schippel C and Schwierz F 2009 Jpn. J. Appl. Phys. 48 04C083
[20] Cai Y, Zhou Y G, Chen K J and Lau K M 2005 Electron Dev. Lett. 26 435
[21] Feng Z H, Zhou R, Xie S Y, Yin J Y Fang J X, Liu B, Zhou W, Chen K J and Cai S J 2010 Electron Dev. Lett. 31 1386
[22] Huang T D, Liu Z J, Zhu X L Ma J, Lu X and Lau K M 2013 Trans. Electron Dev. 60 3019
[23] Brown D F, Shinohara K, Corrion A L, Chu R M, Willianms A, Wong J C, Alvarado-Rodriguez I, Grabar R, Johnson M, Butler C M, Santos D, Burnham S D, Robinson J F, Zehnder D, Kim S J, Oh T C and Micovic M 2013 Electron Dev. Lett. 34 111
[24] Huang S, Liu X Y, Zhang J H, Wei K, Liu G G, Wang X H, Zheng Y K, Liu H G, Jin Z, Zhao C, Liu C, Liu S H, Yang S, Zhang J C, Hao Y and Chen K J 2015 Electron Dev. Lett. 36 754
[25] Gao T, Xu R, Kong Y C, Zhou J J, Zhang K, Kong C, Peng D Q and Chen T S 2016 Phys. Status Solidi A 213 1241
[26] Yang L, Mi M H, Hou B, Zhu J J, Zhang M, Lu Y, He Y L, Zhu Q, Chen L X, Zhou X W, Lv L, Cao Y R, Ma X H and Hao Y 2017 Trans. Electron Dev. 64 4057
[27] Mi M H, Ma X H, Yang L, Hou B, Zhu J J, He Y L, Zhang M, Wu S and Hao Y 2017 Appl. Phys. Lett. 111 173502
[28] Hou B, Ma X H, Yang L, Zhu J J, Zhu Q, Chen L X, Mi M H, Zhang H S, Zhang M, Zhang P, Zhou X W and Hao Y 2017 Appl. Phys. Express 7 076501
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[4] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[5] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[8] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[9] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[10] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[11] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[12] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[13] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[14] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
[15] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
No Suggested Reading articles found!