CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz |
Sheng Wu(武盛), Minhan Mi(宓珉瀚)†, Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃) |
Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China |
|
|
Abstract Ultra-thin barrier (UTB) 4-nm-AlGaN/GaN normally-off high electron mobility transistors (HEMTs) having a high current gain cut-off frequency (fT) are demonstrated by the stress-engineered compressive SiN trench technology. The compressive in-situ SiN guarantees the UTB-AlGaN/GaN heterostructure can operate a high electron density of 1.27×1013cm-2, a high uniform sheet resistance of 312.8 Ω /□, but a negative threshold for the short-gate devices fabricated on it. With the lateral stress-engineering by full removing in-situ SiN in the 600-nm SiN trench, the short-gated (70 nm) devices obtain a threshold of 0.2 V, achieving the devices operating at enhancement-mode (E-mode). Meanwhile, the novel device also can operate a large current of 610 mA/mm and a high transconductance of 394 mS/mm for the E-mode devices. Most of all, a high fT/fmax of 128 GHz/255 GHz is obtained, which is the highest value among the reported E-mode AlGaN/GaN HEMTs. Besides, being together with the 211 GHz/346 GHz of fT/fmax for the D-mode HEMTs fabricated on the same materials, this design of E/D-mode with the realization of fmax over 200 GHz in this work is the first one that can be used in Q-band mixed-signal application with further optimization. And the minimized processing difference between the E- and D-mode designs the addition of the SiN trench, will promise an enormous competitive advantage in the fabricating costs.
|
Received: 06 April 2021
Revised: 01 May 2021
Accepted manuscript online: 25 May 2021
|
PACS:
|
71.55.Eq
|
(III-V semiconductors)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB1804902), the National Natural Science Foundation of China (Grant No. 61904135), the China Postdoctoral Science Foundation (Grant Nos. 2018M640957 and BX20200262), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2020JQ-316). |
Corresponding Authors:
Minhan Mi
E-mail: miminhan@qq.com
|
Cite this article:
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃) High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz 2021 Chin. Phys. B 30 087102
|
[1] Chung J W, Hoke W E, Chumbes E M and Palacios T 2010 Electron Dev. Lett. 31 195 [2] Wu S B, Gao J F, Wang W B and Zhang J Y 2016 Trans. Electron Dev. 63 3882 [3] Corrion A L, Shinohara K, Regan D, Milosavljevic I, Hashimoto P, Willadsen P. J, Schmitz A, Wheeler D C, Butler C M, Brown D, Burnham S D and Micovic M 2010 Electron Dev. Lett. 31 1116 [4] Hu Z Y, Yue Y Z, Zhu M D Zhu, Song B, Ganguly S, Bergman J, Jena D and Xing H L 2014 Appl. Phys. Express 7 031002 [5] Han P C, Wu C H, Ho Y H, Yan Z Z and Chang E Y 2019 Proceedings of the 31st Intenational Symposium on Power Semiconductor Device & ICs, May 19-23, 2019, Shanghai, China, p. 427 [6] Wen Y H, He Z Y, Li J L, Luo R H, Xiang P, Deng Q Y, Xu G N, Shen Z, Wu Z S, Zhang B J, Jiang H, Wang G and Liu Y 2011 Appl. Phys. Lett. 98 072108 [7] Wan R H, Liu X, Lian C X, Gao X, Guo S P, Snider G, Fay P, Jena D and Xing H L 2010 Electron Dev. Lett. 31 1383 [8] Cheng Z, Zhang Y, Zhang L, Zhao Y B, Wang J X and Li J M 2016 13th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors, January 5-12, 2017, Beijing, China, p. 72 [9] Huang S, Liu X Y, Wang X H, Kang X W, Zhang J H, Bao Q L, Wei K, Zheng Y K, Zhao C, Gao H W, Sun Q, Zhang Z F and Chen K J 2016 Electron Dev. Lett. 37 1617 [10] Derluyn J, Boeykens S, Cheng K, Vandersmissen R, Das J, Ruythooren W, Degroote S, Leys M R, Germain M and Borghs G 2005 J. Appl. Phys. 98 054501 [11] Dogmus E, Kabouche R, Linge A, Okada E, Zegaoui M and Medjdoub F 2017 Phys. Status Solidi A 214 1600797 [12] Cheng W C, Lei S Q, Li W M, Zhao F, Chan M and Yu H Y 2019 Electron Devices Technology and Manufacturing Conference, March 12-15, 2019, Singapore, p. 19739002 [13] Cheng W C, Fang T, Lei S Q, Zhao Y L, He M H, Chan M, Xia G R, Zhao F and Yu H Y 2019 IEEE International Conference on Electron Devices and Solid-State Circuits, July 12-14, 2019, Xi'an China, p. 18864091 [14] Kuball M 2001 Surf. Interface Anal. 31 987 [15] Endoh A, Yamashita Y, Ikeda K, Higashiwaki M, Hikosaka K, Matsui T, Hiyamizu S and Mimura T 2004 Jpn. J. Appl. Phys. 43 2255 [16] Lanford W B, Tanaka T, Otoki Y and Adesida I 2005 Electron. Lett. 7 449 [17] Palacios T, Chakraborty C S Sus, Chakraborty A, Keller S, DenBaars S P and Mishra U K 2006 Electron Dev. Lett. 6 428 [18] Higashiwaki M, T Mimura T and Matsui T 2007 Trans. Electron Dev. 54 1566 [19] Maroldt S, Haupt C, Pletschen W, Muller S, Quay R, Ambacher O, Schippel C and Schwierz F 2009 Jpn. J. Appl. Phys. 48 04C083 [20] Cai Y, Zhou Y G, Chen K J and Lau K M 2005 Electron Dev. Lett. 26 435 [21] Feng Z H, Zhou R, Xie S Y, Yin J Y Fang J X, Liu B, Zhou W, Chen K J and Cai S J 2010 Electron Dev. Lett. 31 1386 [22] Huang T D, Liu Z J, Zhu X L Ma J, Lu X and Lau K M 2013 Trans. Electron Dev. 60 3019 [23] Brown D F, Shinohara K, Corrion A L, Chu R M, Willianms A, Wong J C, Alvarado-Rodriguez I, Grabar R, Johnson M, Butler C M, Santos D, Burnham S D, Robinson J F, Zehnder D, Kim S J, Oh T C and Micovic M 2013 Electron Dev. Lett. 34 111 [24] Huang S, Liu X Y, Zhang J H, Wei K, Liu G G, Wang X H, Zheng Y K, Liu H G, Jin Z, Zhao C, Liu C, Liu S H, Yang S, Zhang J C, Hao Y and Chen K J 2015 Electron Dev. Lett. 36 754 [25] Gao T, Xu R, Kong Y C, Zhou J J, Zhang K, Kong C, Peng D Q and Chen T S 2016 Phys. Status Solidi A 213 1241 [26] Yang L, Mi M H, Hou B, Zhu J J, Zhang M, Lu Y, He Y L, Zhu Q, Chen L X, Zhou X W, Lv L, Cao Y R, Ma X H and Hao Y 2017 Trans. Electron Dev. 64 4057 [27] Mi M H, Ma X H, Yang L, Hou B, Zhu J J, He Y L, Zhang M, Wu S and Hao Y 2017 Appl. Phys. Lett. 111 173502 [28] Hou B, Ma X H, Yang L, Zhu J J, Zhu Q, Chen L X, Mi M H, Zhang H S, Zhang M, Zhang P, Zhou X W and Hao Y 2017 Appl. Phys. Express 7 076501 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|