1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract Needle-like single crystals of CeAu2In4 have been grown from In flux and characterized as a new candidate of quasi-one-dimensional Kondo lattice compound by crystallographic, magnetic, transport, and specific-heat measurements down to very low temperatures. We observe an antiferromagnetic transition at TN ≈ 0.9 K, a highly non-mean-field profile of the corresponding peak in specific heat, and a large Sommerfeld coefficient γ =369 mJ·mol-1·K-2. The Kondo temperature TK is estimated to be 1.1 K, being low and comparable to TN. While Fermi liquid behavior is observed deep into the magnetically ordered phase, the Kadowaki-Woods ratio is much reduced relative to the expected value for Ce compounds with Kramers doublet ground state. Markedly, this feature shares striking similarities to that of the prototypical quasi-one-dimensional compounds YbNi4P2 and CeRh6Ge4 with tunable ferromagnetic quantum critical point. Given the shortest Ce-Ce distance along the needle direction, CeAu2In4 appears to be an interesting model system for exploring antiferromagnetic quantum critical behaviors in a quasi-one-dimensional Kondo lattice with enhanced quantum fluctuations.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774404 and 52088101), the National Key R&D Program of China (Grant No. 2017YF A0303100), and the Chinese Academy of Sciences through the Strategic Priority Research Program (Grant No. XDB33000000).
Corresponding Authors:
Peijie Sun
E-mail: pjsun@iphy.ac.cn
Cite this article:
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰) CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice 2021 Chin. Phys. B 30 087101
[1] Shimozawa M, Goh S K, Shibauchi T and Matsuda Y 2016 Rep. Prog. Phys.79 074503 [2] Shishido H, Shibauchi T, Yasu K, Kato T, Kontani H, Terashima T and Matsuda Y 2010 Science327 980 [3] Doniach S 1977 Physica B+C91 231 [4] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Steglich F, Pépin C and Coleman P 2003 Nature424 524 [5] Izawa K, Yamaguchi H, Matsuda Y, Shishido H, Settai R and Onuki Y 2001 Phys. Rev. Lett.87 057002 [6] Steppke A, Kuchler R, Lausberg S, Lengyel E, Steinke L, Borth R, Luhmann T, Krellner C, Nicklas, Geibel M C, Steglich F and Brando M 2013 Science339 933 [7] Shen B, Zhang Y, Komijani Y, Nicklas M, Borth R, Wang A, Chen Y, Nie Z, Li R, Lu X, Lee H, Smidman M, Steglich F, Coleman P and Yuan H 2020 Nature579 51 [8] Wang L, Fu Z, Sun J, Liu M, Yi W, Yi C, Luo Y, Dai Y, Liu G, Matsushita Y, Yamaura K, Lu L, Cheng J G, Yang Y F, Shi Y and Luo J 2017 npj Quantum Materials2 36 [9] Salvador J R, Hoang K, Mahanti S D and Kanatzidis M G 2007 Inorg. Chem.46 6933 [10] Sebastian C P, Salvador J, Martin J B and Kanatzidis M G 2010 Inorg. Chem.49 10468 [11] Joshi D A, Manfrinetti P, Dhar S K and Thamizhavel A 2010 J. Phys.: Conf. Ser.200 012074 [12] Paschen S and Si Q 2020 Nat. Rev. Phys.3 9 [13] Pfau H, Daou R, Friedemann S, Karbassi S, Ghannadzadeh S, Küchler R, Hamann S, Steppke A, Sun D, König M, Mackenzie A P, Kliemt K, Krellner C and Brando M 2017 Phys. Rev. Lett.119 126402 [14] Buschow K H J, de Wijn H W and van Diepen A M 1969 J. Chem. Phys.50 137 [15] Zhao H, Zhang J, Hu S, Isikawa Y, Luo J, Steglich F and Sun P 2016 Phys. Rev. B94 235131 [16] Busch G and Vogt O 1967 Phys. Lett. A25 449 [17] Bartholin H, Florence D, Wang T and Vogt O 1974 Phys. Stat. Sol.24 631 [18] Heer H, Furrert A, Halgt W and Vogt O 1979 J. Phys. C: Solid State Phys.12 5207 [19] Fritsch V, Huang C L, Bagrets N, Grube K, Schumann S and Löhneysen H v 2013 Physica Status Solidi (b)250 506 [20] Desgranges H U and Schotte K D 1982 Phys. Lett. A91 240 [21] Yashima H 1982 Solid State Commun.43 193 [22] Kadowaki K and Woods S 1986 Solid State Commun.58 507 [23] Tsujii N, Kontani H and Yoshimura K 2005 Phys. Rev. Lett.94 057201 [24] Huesges Z, Kliemt K, Krellner C, Sarkar R, Klauß H H, Geibel C, Rotter M, Novák P, Kuneš J and Stockert O 2018 New J. Phys.20 073021 [25] Voßwinkel D, Niehaus O, Rodewald U C and Pöttgen R 2012 Zeitschrift für Naturforschung B67 1241 [26] Shu J W, Adroja D T, Hillier A D, Zhang Y J, Chen Y X, Shen B, Orlandi F, Walker H C, Liu Y, Cao C, Steglich F, Yuan H Q and Smidman M 2021 arXiv:2102.12788
Electronic structure of heavy fermion system CePt2In7 from angle-resolved photoemission spectroscopy Bing Shen(沈兵), Li Yu(俞理), Kai Liu(刘凯), Shou-Peng Lyu(吕守鹏), Xiao-Wen Jia(贾小文), E D Bauer, J D Thompson, Yan Zhang(张艳), Chen-Lu Wang(王晨露), Cheng Hu(胡成), Ying Ding(丁颖), Xuan Sun(孙璇), Yong Hu(胡勇), Jing Liu(刘静), Qiang Gao(高强), Lin Zhao(赵林), Guo-Dong Liu(刘国东), Zu-Yan Xu(许祖彦), Chuang-Tian Chen(陈创天), Zhong-Yi Lu(卢仲毅), X J Zhou(周兴江). Chin. Phys. B, 2017, 26(7): 077401.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.