|
|
Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells |
Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫)†, and Yaowen Li(李耀文)‡ |
Laboratory of Advanced Optoelectronic Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China |
|
|
Abstract Formamidinium lead triiodide (FAPbI3) is a research hotspot in perovskite photovoltaics due to its broad light absorption and proper thermal stability. However, quite a few researches focused on the stability of the FAPbI3 perovskite precursor solutions. Besides, the most efficient FAPbI3 layers are prepared by the spin-coating method, which is limited to the size of the device. Herein, the stability of FAPbI3 perovskite solution with methylammonium chloride (MACl) or cesium chloride (CsCl) additive is studied for preparing perovskite film through an upscalable blade-coating method. Each additive works well for achieving a high-quality FAPbI3 film, resulting in efficient carbon electrode perovskite solar cells (pero-SCs) in the ambient condition. However, the perovskite solution with MACl additive shows poor aging stability that no α-FAPbI3 phase is observed when the solution is aged over one week. While the perovskite solution with CsCl additive shows promising aging stability that it still forms high-quality pure α-FAPbI3 perovskite film even the solution is aged over one month. During the solution aging process, the MACl could be decomposed into methylamine which will form some unfavored intermediated phase inducing δ-phase FAPbI3. Whereas, replacing MACl with CsCl could effectively solve this issue. Our founding shows that there is a great need to develop a non-MACl FAPbI3 perovskite precursor solution for cost-effective preparation of pero-SCs.
|
Received: 31 March 2021
Revised: 24 April 2021
Accepted manuscript online: 27 April 2021
|
PACS:
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
88.40.hj
|
(Efficiency and performance of solar cells)
|
|
84.60.Jt
|
(Photoelectric conversion)
|
|
Fund: Project supported by the Key Research and Development Program of China (Grant No. 2020YFB1506400), the National Natural Science Foundation of China (Grant Nos. 51922074, 51673138, 51820105003, and 22075194), the Tang Scholar, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Collaborative Innovation Center of Suzhou Nano Science and Technology. |
Corresponding Authors:
Fu Yang, Yaowen Li
E-mail: fuyang@suda.edu.cn;ywli@suda.edu.cn
|
Cite this article:
Yu Zhan(占宇), Weijie Chen(陈炜杰), Fu Yang(杨甫), and Yaowen Li(李耀文) Stabilization of formamidinium lead iodide perovskite precursor solution for blade-coating efficient carbon electrode perovskite solar cells 2021 Chin. Phys. B 30 088803
|
[1] Eperon G E, Stranks S D, Menelaou C, Johnston M B, Herz L M and Snaith H J 2014 Energy Environ. Sci. 7 982 [2] Diao X, Tang Y and Xie Q 2019 Chin. Phys. B 28 17802 [3] Min H, Kim M, Lee S U, Kim H, Kim G, Choi K, Lee J H and Seok S I 2019 Science 366 749 [4] Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M and Kim J Y 2021 Nature 592 381 [5] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476 [6] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234 [7] Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z and You J 2019 Nat. Photon. 13 460 [8] Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X and You J 2016 Nat. Energy 2 16177 [9] Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542 [10] Xu G, Xue R, Stuard S J, Ade H, Zhang C, Yao J, Li Y and Li Y 2021 Adv. Mater. 33 2006753 [11] Yang F, Dong L, Jang D, Tam K C, Zhang K, Li N, Guo F, Li C, Arrive C, Bertrand M, Brabec C J and Egelhaaf H J 2020 Adv. Energy Mater. 10 2001869 [12] Hui W, Chao L, Lu H, Xia F, Wei Q, Su Z, Niu T, Tao L, Du B, Li D, Wang Y, Dong H, Zuo S, Li B, Shi W, Ran X, Li P, Zhang H, Wu Z, Ran C, Song L, Xing G, Gao X, Zhang J, Xia Y, Chen Y and Huang W 2021 Science 371 1359 [13] Wang X, Fan Y, Wang L, Chen C, Li Z, Liu R, Meng H, Shao Z, Du X, Zhang H, Cui G and Pang S 2020 Chem 6 1369 [14] Bruening K, Dou B, Simonaitis J, Lin Y Y, van Hest M F and Tassone C J 2018 Joule 2 2464 [15] Li Z, Klein T R, Kim D H, Yang M, Berry J J, van Hest M F and Zhu K 2018 Nat. Rev. Mater. 3 1 [16] Cai M, Wu Y, Chen H, Yang X, Qiang Y and Han L 2017 Adv. Sci. 4 1600269 [17] Qiu L, He S, Ono L K, Liu S and Qi Y 2019 ACS Energy Lett. 4 2147 [18] Guo F, He W, Qiu S, Wang C, Liu X, Forberich K, Brabec C J and Mai Y 2019 Adv. Funct. Mater. 29 1900964 [19] Guo F, Qiu S, Hu J, Wang H, Cai B, Li J, Yuan X, Liu X, Forberich K and Brabec C J 2019 Adv. Sci. 6 1901067 [20] Xue R, Zhang M, Luo D, Chen W, Zhu R, Yang M, Li Y and Li Y 2020 Sci. China Chem. 63 987 [21] Yang F, Kamarudin M A, Hirotani D, Zhang P, Kapil G, Ng C H, Ma T and Hayase S 2019 Sol. RRL 3 1800275 [22] Yang F, Zhang P, Kamarudin M A, Kapil G, Ma T and Hayase S 2018 Adv. Funct. Mater. 28 1804856 [23] Dou B, Whitaker J B, Bruening K, Moore D T, Wheeler L M, Ryter J, Breslin N J, Berry J J, Garner S M and Barnes F S 2018 ACS Energy Lett. 3 2558 [24] Hu H, Ren Z, Fong P W, Qin M, Liu D, Lei D, Lu X and Li G 2019 Adv. Funct. Mater. 29 1900092 [25] Deng Y, Zheng X, Bai Y, Wang Q, Zhao J and Huang J 2018 Nat. Energy 3 560 [26] Dai X, Deng Y, Van Brackle C H, Chen S, Rudd P N, Xiao X, Lin Y, Chen B and Huang J 2020 Adv. Energy Mater. 10 1903108 [27] Deng Y, Van Brackle C H, Dai X, Zhao J, Chen B and Huang J 2019 Sci. Adv. 5 eaax7537 [28] Wu W Q, Yang Z, Rudd P N, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q and Liu Y 2019 Sci. Adv. 5 eaav8925 [29] Fagiolari L and Bella F 2019 Energy Environ. Sci. 12 3437 [30] Gao L, Zhou Y, Meng F, Li Y, Liu A, Li Y, Zhang C, Fan M, Wei G and Ma T 2020 Carbon 162 267 [31] Yang F, Kamarudin M A, Kapil G, Hirotani D, Zhang P, Ng C H, Ma T and Hayase S 2018 ACS Appl. Mater. Interfaces 10 24543 [32] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L and Mohite A D 2015 Science 347 522 [33] Kim H D, Ohkita H, Benten H and Ito S 2016 Adv. Mater. 28 917 [34] Castro-Méndez A F, Hidalgo J and Correa-Baena J P 2019 Adv. Energy Mater. 9 1901489 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|