CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons |
Qian Liu(刘倩)1,2, Min Tong(佟敏)1, Xin-Guo Zhao(赵新国)1,2,†, Nai-Kun Sun(孙乃坤)3,‡, Xiao-Fei Xiao(肖小飞)1,2, Jie Guo(郭杰)1,2, Wei Liu(刘伟)1,2, and Zhi-Dong Zhang(张志东)1,2 |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China; 3 School of Science, Shenyang Ligong University, Shenyang 110159, China |
|
|
Abstract The effects of wheel speeds and high-pressure hydrogen treatment on phase evolution, microstructure, and magnetocaloric properties in La0.5Pr0.5Fe11.4Si1.6 melt-spun ribbons are studied in this work. The results reveal that the increase of wheel speed is beneficial to the formation of cubic NaZn13-type phase and the grain refinement. The optimized wheel speed for microstructural and magnetocaloric properties is 30 m/s. The largest entropy change of 18.1 J/kg·K at 190 K under a magnetic field change of 0 T-5 T is obtained in La0.5Pr0.5Fe11.4Si1.6 ribbons melt-spun at 30 m/s. After a high-pressure hydrogen treatment of 50 MPa, the Curie temperature of the ribbons prepared at 30 m/s is adjusted to about 314 K and the large -ΔSM of 17.9 J/kg·K under a magnetic field change of 0 T-5 T is achieved at room temperature with almost none hysteresis loss. The small thermal and magnetic hysteresis and the large -ΔSM make the La0.5Pr0.5Fe11.4Si1.6 hydride ribbons appropriate for magnetic refrigerant applications around room temperature.
|
Received: 24 December 2020
Revised: 25 January 2021
Accepted manuscript online: 01 March 2021
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51771197), the Fund from the Chinese Academy of Sciences (Grant No. KJZD-EW-M05), and the Liaoning Revitalization Talents Program, China (Grant No. XLYC1807122). |
Corresponding Authors:
Xin-Guo Zhao, Nai-Kun Sun
E-mail: xgzhao@imr.ac.cn;naikunsun@163.com
|
Cite this article:
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东) Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons 2021 Chin. Phys. B 30 087502
|
[1] Pecharsky V K and Gschneidner K A 1997 Phys. Rev. Lett. 78 4494 [2] Tegus O, Bruck E, Buschow K H J and de Boer F R 2002 Nature 415 150 [3] Bao L F, Hu F X, Chen L, Wang J, Sun J R and Shen B G 2012 Appl. Phys. Lett. 101 162406 [4] He C, Zhang M X, Shao Y Y, Dong J D, Yan A R and Liu J 2015 Chin. Phys. B 24 077503 [5] Chen Y F, Wang F, Shen B G, Hu F X, Cheng Z H, Wang G J and Sun J R 2002 Chin. Phys. 11 741 [6] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545 [7] Xu L, Zhao J L, Yang J J, Zhang H G, Liu D M, Yue M and Jang Y J 2017 Chin. Phys. B 26 067502 [8] Niitsu K and Kainuma R 2012 Intermetallics 20 160 [9] Liu J, Krautz M, Skokov K, Woodcock T G and Gutfleisch O 2011 Acta Mater. 59 3602 [10] Yang L, Li J, Tu D F, Strickland J C J, Hu Q D, Dong H B and Li J G 2020 Acta Metall. Sin. (Engl. Lett.) 33 1535 [11] Zhang H, Hu F X, Sun J R and Shen B G 2013 Sci. China: Phys. Mech. Astron. 56 2302 [12] Zhang P, Liu J, Shao Y and Yan A 2017 Mater. Lett. 193 34 [13] Yan A, Muller K H and Gutfleisch O 2005 J. Appl. Phys. 97 036102 [14] Yang J, Shao Y Y, Feng Z X and Liu J 2018 J. Magn. Magn. Mater. 452 473 [15] Hou X L, Han N, Xue Y, Lu Q Q, Wang X C and Phan M H 2016 J. Electron. Mater. 45 4730 [16] Santana R P, de Oliveira N A and von Ranke P J 2011 J. Alloys Compd. 509 6346 [17] Yan A, Mueller K H and Gutfleisch O 2008 J. Alloys Compd. 450 18 [18] Shen J, Li Y X, Wang F, Wang G J and Zhang S Y 2004 Chin. Phys. 13 1134 [19] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416 [20] Sun N K, Guo J, Zhao X G, Si P Z, Huang J H and Zhang Z D 2015 Appl. Phys. Lett. 106 092401 [21] Hou X L, Xue Y, Liu C Y, Xu H, Han N, Ma C W and Phan M H 2015 Nanoscale Res. Lett. 10 1 [22] Liu X B, Altounian Z and Tu G H 2004 J. Phys.: Condes. Matter 16 8043 [23] Fujieda S, Fukamichi K and Suzuki S 2013 J. Alloys Compd. 566 196 [24] Shen J, Gao B, Zhang H W, Hu F X, Li Y X, Sun J R and Shen B G 2007 Appl. Phys. Lett. 91 142504 [25] Zhao J L, Shen J, Hu F X, Li Y X, Sun J R and Shen B G 2010 J. Appl. Phys. 107 113911 [26] Rosca M, Balli M, Fruchart D, Gignoux D, Hlil E K, Miraglia S, Ouladdiaf B and Wolfers P 2010 J. Alloys Compd 490 50 [27] Moze O, Kockelmann W, Liu J P, de Boer F R and Buschow K H J 1999 J. Magn. Magn. Mater. 195 391 [28] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675 [29] Gschneidner K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479 [30] Provenzano V, Shapiro A J and Shull R D 2004 Nature 429 853 [31] Balli M, Fruchart D and Gignoux D 2007 J. Phys.: Condes. Matter 19 236230 [32] Sharma V K, Chattopadhyay M K and Roy S B 2007 J. Phys. D-Appl. Phys. 40 1869 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|