Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087501    DOI: 10.1088/1674-1056/abec31
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder

Cong Fu(傅聪)1, Hui Zhao(赵晖)1,†, Yu-Guang Chen(陈宇光)1, and Yong-Hong Yan(鄢永红)2
1 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
2 School of Mathematical Information, Shaoxing University, Shaoxing 312000, China
Abstract  Dimerized spin-1/2 ladders exhibit a variety of phase structures, which depend on the intra-chain and inter-chain spin exchange energies as well as on the dimerization pattern of the ladder. Using the density matrix renormalization group (DMRG) algorithm, we study critical properties of the bond-alternating two-leg Heisenberg spin ladder with diagonal interaction J×. Two types of spin systems, staggered dimerized antiferromagnetic ladder and columnar dimerized ferro-antiferromagnetic couplings ladder, are investigated. To clarify the phase transition behaviors, we simultaneously analyze the string order parameter (SOP), the twisted order parameter (TOP), as well as a measurement of the quantum information analysis. Based on measuring this different observables, we establish the phase diagram accurately and give the fitting functions of the phase boundaries. In addition, the phase transition of cross-coupled spin ladder (in the absence of intrinsic dimerization) is also discussed.
Keywords:  spin ladder      density matrix renormalization group      Heisenberg model      quantum phase transition  
Received:  31 December 2020      Revised:  31 December 2020      Accepted manuscript online:  05 March 2021
PACS:  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.10.Pq (Spin chain models)  
  75.40.Mg (Numerical simulation studies)  
  75.50.Ee (Antiferromagnetics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474218 and 11575116).
Corresponding Authors:  Hui Zhao     E-mail:  zhaoh@fudan.edu.cn

Cite this article: 

Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红) Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder 2021 Chin. Phys. B 30 087501

[1] Azuma M, Hiroi Z, Takano M, Ishida K and Kitaoka Y 1994 Phys. Rev. Lett. 73 3463
[2] Hong T, Schmidt K P, Coester K, Awwadi F F, Turnbull M M, Qiu Y, Rodriguez-Rivera J A, Zhu M, Ke X, Aoyama C P, Takano Y, Cao H B, Tian W, Ma J, Custelcean R, Zhou H D and Matsuda M 2014 Phys. Rev. B 89 174432
[3] Rao G N, Sankar R, Singh A, Muthuselvam I P, Chen W T, Singh V N, Guo G Y and Chou F C 2016 Phys. Rev. B 93 104401
[4] Gibbs A S, Yamamoto A, Yaresko A N, Knight K S, Yasuoka H, Majumder M, Baenitz M, Saines P J, Hester J R, Hashizume D, Kondo A, Kindo K and Takagi H 2017 Phys. Rev. B 95 104428
[5] Glamazda A, Choi Y S, Do S H, Lee S, Lemmens P, Ponomaryov A N, Zvyagin S A, Wosnitza J, Sari D P, Watanabe I and Choi K Y 2017 Phys. Rev. B 95 184430
[6] Macdougal D, Gibbs A S, Ying T, Wessel S, Walker H C, Voneshen D, Mila F, Takagi H and Coldea R 2018 Phys. Rev. B 98 174410
[7] Starykh O A and Balents L 2004 Phys. Rev. Lett. 93 127202
[8] Azzouz M, Shahin K and Chitov G Y 2007 Phys. Rev. B 76 132410
[9] Hung H H, Gong C D, Chen Y C and Yang M F 2006 Phys. Rev. B 73 224433
[10] Kim E H, Legeza Ö and Sólyom J 2008 Phys. Rev. B 77 205121
[11] Barcza G, Legeza Ö, Noack R M and Sólyom J 2012 Phys. Rev. B 86 075133
[12] Luo Q, Zhao J Z and Wang X Q 2019 Phys. Rev. B 100 121111
[13] Liu G H, Wang H L and Tian G S 2008 Phys. Rev. B 77 214418
[14] Hikihara T and Starykh O A 2010 Phys. Rev. B 81 064432
[15] Dagotto E and Rice T M 1996 Science 271 618
[16] White S R, Noack R M and Scalapino D J 1994 Phys. Rev. Lett. 73 886
[17] Martín-Delgado M A, Shankar R and Sierra G 1996 Phys. Rev. Lett. 77 3443
[18] Okamoto K 2003 Phys. Rev. B 67 212408
[19] Almeida J, Martín-Delgado M A and Sierra G 2007 Phys. Rev. B 76 184428
[20] Chitov G Y, Ramakko B W and Azzouz M 2008 Phys. Rev. B 77 224433
[21] Gibson S J, Meyer R and Chitov G Y 2011 Phys. Rev. B 83 104423
[22] White S R 1992 Phys. Rev. Lett. 69 2863
[23] White S R 1993 Phys. Rev. B 48 10345
[24] Nakamura M and Todo S 2002 Phys. Rev. Lett. 89 077204
[25] Almeida J, Martín-Delgado M A and Sierra G 2008 J. Phys. A: Math. Theor. 41 485301
[26] Feiguin A E, Riera J A, Dobry A and Ceccatto H A 1997 Phys. Rev. B 56 14607
[27] den Nijs M and Rommelse K 1989 Phys. Rev. B 40 4709
[28] Shelton D G, Nersesyan A A and Tsvelik A M 1996 Phys. Rev. B 53 8521
[29] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[30] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402
[31] Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404
[32] Sólyom J and Legeza Ö 2006 Phys. Rev. Lett. 96 116401
[33] Legeza Ö, Sólyom J, Tincani L and Noack R M 2007 Phys. Rev. Lett. 99 087203
[34] Molina R A and Schmitteckert P 2007 Phys. Rev. B 75 235104
[35] Tian G S and Lin H Q 2003 Phys. Rev. B 67 245105
[1] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[2] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[3] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[6] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[7] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[8] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[9] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[10] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[11] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[12] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[13] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
[14] Lifshitz transition in triangular lattice Kondo-Heisenberg model
Lan Zhang(张欄), Yin Zhong(钟寅), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 077102.
[15] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
No Suggested Reading articles found!