CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder |
Cong Fu(傅聪)1, Hui Zhao(赵晖)1,†, Yu-Guang Chen(陈宇光)1, and Yong-Hong Yan(鄢永红)2 |
1 School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 2 School of Mathematical Information, Shaoxing University, Shaoxing 312000, China |
|
|
Abstract Dimerized spin-1/2 ladders exhibit a variety of phase structures, which depend on the intra-chain and inter-chain spin exchange energies as well as on the dimerization pattern of the ladder. Using the density matrix renormalization group (DMRG) algorithm, we study critical properties of the bond-alternating two-leg Heisenberg spin ladder with diagonal interaction J×. Two types of spin systems, staggered dimerized antiferromagnetic ladder and columnar dimerized ferro-antiferromagnetic couplings ladder, are investigated. To clarify the phase transition behaviors, we simultaneously analyze the string order parameter (SOP), the twisted order parameter (TOP), as well as a measurement of the quantum information analysis. Based on measuring this different observables, we establish the phase diagram accurately and give the fitting functions of the phase boundaries. In addition, the phase transition of cross-coupled spin ladder (in the absence of intrinsic dimerization) is also discussed.
|
Received: 31 December 2020
Revised: 31 December 2020
Accepted manuscript online: 05 March 2021
|
PACS:
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.10.Pq
|
(Spin chain models)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474218 and 11575116). |
Corresponding Authors:
Hui Zhao
E-mail: zhaoh@fudan.edu.cn
|
Cite this article:
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红) Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder 2021 Chin. Phys. B 30 087501
|
[1] Azuma M, Hiroi Z, Takano M, Ishida K and Kitaoka Y 1994 Phys. Rev. Lett. 73 3463 [2] Hong T, Schmidt K P, Coester K, Awwadi F F, Turnbull M M, Qiu Y, Rodriguez-Rivera J A, Zhu M, Ke X, Aoyama C P, Takano Y, Cao H B, Tian W, Ma J, Custelcean R, Zhou H D and Matsuda M 2014 Phys. Rev. B 89 174432 [3] Rao G N, Sankar R, Singh A, Muthuselvam I P, Chen W T, Singh V N, Guo G Y and Chou F C 2016 Phys. Rev. B 93 104401 [4] Gibbs A S, Yamamoto A, Yaresko A N, Knight K S, Yasuoka H, Majumder M, Baenitz M, Saines P J, Hester J R, Hashizume D, Kondo A, Kindo K and Takagi H 2017 Phys. Rev. B 95 104428 [5] Glamazda A, Choi Y S, Do S H, Lee S, Lemmens P, Ponomaryov A N, Zvyagin S A, Wosnitza J, Sari D P, Watanabe I and Choi K Y 2017 Phys. Rev. B 95 184430 [6] Macdougal D, Gibbs A S, Ying T, Wessel S, Walker H C, Voneshen D, Mila F, Takagi H and Coldea R 2018 Phys. Rev. B 98 174410 [7] Starykh O A and Balents L 2004 Phys. Rev. Lett. 93 127202 [8] Azzouz M, Shahin K and Chitov G Y 2007 Phys. Rev. B 76 132410 [9] Hung H H, Gong C D, Chen Y C and Yang M F 2006 Phys. Rev. B 73 224433 [10] Kim E H, Legeza Ö and Sólyom J 2008 Phys. Rev. B 77 205121 [11] Barcza G, Legeza Ö, Noack R M and Sólyom J 2012 Phys. Rev. B 86 075133 [12] Luo Q, Zhao J Z and Wang X Q 2019 Phys. Rev. B 100 121111 [13] Liu G H, Wang H L and Tian G S 2008 Phys. Rev. B 77 214418 [14] Hikihara T and Starykh O A 2010 Phys. Rev. B 81 064432 [15] Dagotto E and Rice T M 1996 Science 271 618 [16] White S R, Noack R M and Scalapino D J 1994 Phys. Rev. Lett. 73 886 [17] Martín-Delgado M A, Shankar R and Sierra G 1996 Phys. Rev. Lett. 77 3443 [18] Okamoto K 2003 Phys. Rev. B 67 212408 [19] Almeida J, Martín-Delgado M A and Sierra G 2007 Phys. Rev. B 76 184428 [20] Chitov G Y, Ramakko B W and Azzouz M 2008 Phys. Rev. B 77 224433 [21] Gibson S J, Meyer R and Chitov G Y 2011 Phys. Rev. B 83 104423 [22] White S R 1992 Phys. Rev. Lett. 69 2863 [23] White S R 1993 Phys. Rev. B 48 10345 [24] Nakamura M and Todo S 2002 Phys. Rev. Lett. 89 077204 [25] Almeida J, Martín-Delgado M A and Sierra G 2008 J. Phys. A: Math. Theor. 41 485301 [26] Feiguin A E, Riera J A, Dobry A and Ceccatto H A 1997 Phys. Rev. B 56 14607 [27] den Nijs M and Rommelse K 1989 Phys. Rev. B 40 4709 [28] Shelton D G, Nersesyan A A and Tsvelik A M 1996 Phys. Rev. B 53 8521 [29] Wootters W K 1998 Phys. Rev. Lett. 80 2245 [30] Gu S J, Deng S S, Li Y Q and Lin H Q 2004 Phys. Rev. Lett. 93 086402 [31] Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404 [32] Sólyom J and Legeza Ö 2006 Phys. Rev. Lett. 96 116401 [33] Legeza Ö, Sólyom J, Tincani L and Noack R M 2007 Phys. Rev. Lett. 99 087203 [34] Molina R A and Schmitteckert P 2007 Phys. Rev. B 75 235104 [35] Tian G S and Lin H Q 2003 Phys. Rev. B 67 245105 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|