Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087503    DOI: 10.1088/1674-1056/ac0a5d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation

Mengjie Sun(孙梦杰)1,2,†, Huihang Lin(林慧航)1,†, Zheng Zhang(张政)1,2, Yanzhen Cai(蔡焱桢)3, Wei Ren(任玮)3, Jing Kang(康靖)3, Jianting Ji(籍建葶)2, Feng Jin(金峰)2, Xiaoqun Wang(王孝群)4,5, Rong Yu(俞榕)1, Qingming Zhang(张清明)3,2,‡, and Zhengxin Liu(刘正鑫)1,§
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China;
4 Key Laboratory of Artificial Structures and Quantum Control of MOE, Shenyang National Laboratory for Materials Science, Shenyang 110016, China;
5 School of Physics and Astronomy, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract  Recently, the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid (KSL) [Chin. Phys. Lett. 38 047502 (2021)]. In the present work, we firstly propose an effective spin Hamiltonian consistent with the symmetry group of the crystal structure. Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram. When approaching to the low temperature limit, several magnetic long range orders are observed, including the stripe, the zigzag, the antiferromagnetic (AFM), the ferromagnetic (FM), the incommensurate spiral (IS), the multi-Q, and the 120° ones. We further calculate the thermodynamic properties of the system, such as the temperature dependence of the magnetic susceptibility and the heat capacity. The ordering transition temperatures reflected in the two quantities agree with each other. For most interaction regions, the system is magnetically more susceptible in the ab-plane than in the c-direction. The stripe phase is special, where the susceptibility is fairly isotropic in the whole temperature region. These features provide useful information to understand the magnetic properties of related materials.
Keywords:  Monte Carlo methods      Kitaev materials      quantum spin liquids      rare-earth ions      DM interaction  
Received:  23 April 2021      Revised:  07 June 2021      Accepted manuscript online:  11 June 2021
PACS:  02.70.Uu (Applications of Monte Carlo methods)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
  75.10.Kt (Quantum spin liquids, valence bond phases and related phenomena)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504), the National Natural Science Foundation of China (Grant Nos. U1932215, 11774419, 11574392, and 11974421), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33010100), the Fundamental Research Funds for the Central Universities, China, and the Research Funds of Renmin University of China (Grant No. 19XNLG11). Q. M. Z. acknowledges the support from Users with Excellence Program of Hefei Science Center and High Magnetic Field Facility, CAS.
Corresponding Authors:  Qingming Zhang, Zhengxin Liu     E-mail:  qmzhang@ruc.edu.cn;liuzxphys@ruc.edu.cn

Cite this article: 

Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫) Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation 2021 Chin. Phys. B 30 087503

[1] Ji J, Sun M, Cai Y, Wang Y, Sun Y, Ren W, Zhang Z, Jin F and Zhang Q 2021 Chin. Phys. Lett. 38 047502
[2] AdyStern 2010 Nature 464 187
[3] Shimizu Y, Miyagawa K, Kanoda K, Maesato M and Saito G 2003 Phys. Rev. Lett. 91 107001
[4] Itou T, Oyamada A, Maegawa S and Kato R 2010 Nat. Phys. 6 673
[5] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406
[6] Depenbrock S, McCulloch I P and Schollwöck U 2012 Phys. Rev. Lett. 109 067201
[7] Chen G and Balents L 2008 Phys. Rev. B 78 094403
[8] Lawler M J, Kee H Y, Kim Y B and Vishwanath A 2008 Phys. Rev. Lett. 100 227201
[9] Micklitz T and Norman M R 2010 Phys. Rev. B 81 174417
[10] Kitaev A 2006 Ann. Phys 321 2
[11] Chaloupka J c v, Jackeli G and Khaliullin G 2010 Phys. Rev. Lett. 105 027204
[12] Nasu J, Knolle J, Kovrizhin D L, Motome Y and Moessner R 2016 Nat. Rev. Phys. 12 912
[13] Barkeshli M, Berg E and Kivelson S 2014 Science 346 722
[14] Shitade A, Katsura H, Kuneš J, Qi X L, Zhang S C and Nagaosa N 2009 Phys. Rev. Lett. 102 256403
[15] Choi S K, Coldea R, Kolmogorov A N, Lancaster T, Mazin I I, Blundell S J, Radaelli P G, Singh Y, Gegenwart P, Choi K R, Cheong S W, Baker P J, Stock C and Taylor J 2012 Phys. Rev. Lett. 108 127204
[16] Plumb K W, Clancy J P, Sandilands L J, Shankar V V, Hu Y F, Burch K S, Kee H Y and Kim Y J 2014 Phys. Rev. B 90 041112
[17] Liu X, Berlijn T, Yin W G, Ku W, Tsvelik A, Kim Y J, Gretarsson H, Singh Y, Gegenwart P and Hill J P 2011 Phys. Rev. B 83 220403
[18] Baek S H, Do S H, Choi K Y, Kwon Y S, Wolter A U B, Nishimoto S, van den Brink J and Büchner B 2017 Phys. Rev. Lett. 119 037201
[19] Takayama T, Kato A, Dinnebier R, Nuss J, Kono H, Veiga L S I, Fabbris G, Haskel D and Takagi H 2015 Phys. Rev. Lett. 114 077202
[20] Williams S C, Johnson R D, Freund F, Choi S, Jesche A, Kimchi I, Manni S, Bombardi A, Manuel P, Gegenwart P and Coldea R 2016 Phys. Rev. B 93 195158
[21] Knolle J, Moessner R and Perkins N B 2019 Phys. Rev. Lett. 122 047202
[22] Johnson R D, Williams S C, Haghighirad A A, Singleton J, Zapf V, Manuel P, Mazin I I, Li Y, Jeschke H O, Valentí R and Coldea R 2015 Phys. Rev. B 92 235119
[23] Liu Z X and Normand B 2018 Phys. Rev. Lett. 120 187201
[24] Zheng J, Ran K, Li T, Wang J, Wang P, Liu B, Liu Z X, Normand B, Wen J and Yu W 2017 Phys. Rev. Lett. 119 227208
[25] Wolter A U B, Corredor L T, Janssen L, Nenkov K, Schönecker S, Do S H, Choi K Y, Albrecht R, Hunger J, Doert T, Vojta M and Büchner B 2017 Phys. Rev. B 96 041405
[26] Yadav R, Bogdanov N A, Katukuri V M, Nishimoto S, van den Brink J and Hozoi L 2016 Sci. Rep. 6 37925
[27] Banerjee A, Lampen-Kelley P, Knolle J, Balz C, Aczel A A,Winn B, Liu Y, Pajerowski D, Yan J, Bridges C A, Savici A T, Chakoumakos B C, Lumsden M D, Tennant D A, Moessner R, Mandrus D G and Nagler S E 2018 npj Quantum Mater. 3 8
[28] Yao W and Li Y 2020 Phys. Rev. B 101 085120
[29] Ran K, Wang J, Wang W, Dong Z Y, Ren X, Bao S, Li S, Ma Z, Gan Y, Zhang Y, Park J T, Deng G, Danilkin S, Yu S L, Li J X and Wen J 2017 Phys. Rev. Lett. 118 107203
[30] Lin D, Ran K, Zheng H, Xu J, Gao L, Wen J, Yu S L, Li J X and Xi X 2020 Phys. Rev. B 101 045419
[31] Rau J G, Lee E K H and Kee H Y 2014 Phys. Rev. Lett. 112 077204
[32] Jackeli G and Khaliullin G 2009 Phys. Rev. Lett. 102 017205
[33] Birol T and Haule K 2015 Phys. Rev. Lett. 114 096403
[34] Banerjee A, Bridges C A, Yan J Q, Aczel A A, Li L, Stone M B, Granroth G E, Lumsden M D, Yiu Y, Knolle J, Bhattacharjee S, Kovrizhin D L, Moessner R, Tennant D A, Mandrus D G and Nagler S E 2016 Nat. Mater. 15 733
[35] Wang W, Dong Z Y, Yu S L and Li J X 2017 Phys. Rev. B 96 115103
[36] Laurell P and Okamoto S 2020 npj Quantum Mater. 5 2
[37] Wang J, Normand B and Liu Z X 2019 Phys. Rev. Lett. 123 197201
[38] Liu W, Zhang Z, Ji J, Liu Y, Li J, Wang X, Lei H, Chen G and Zhang Q 2018 Chin. Phys. Lett. 35 117501
[39] Zhang Z, Li J, Liu W, Zhang Z, Ji J, Jin F, Chen R, Wang J, Wang X, Ma J and Zhang Q 2021 Phys. Rev. B 103 184419
[40] Zhang Z, Ma X, Li J, Wang G, Adroja D T, Perring T P, Liu W, Jin F, Ji J, Wang Y, Kamiya Y, Wang X, Ma J and Zhang Q 2021 Phys. Rev. B 103 035144
[41] Song K and Kauzlarich S M 1994 Chem. Mater. 6 386
[42] Li Y, Chen G, Tong W, Pi L, Liu J, Yang Z, Wang X and Zhang Q 2015 Phys. Rev. Lett. 115 167203
[43] Li Y, Liao H, Zhang Z, Li S, Jin F, Ling L, Zhang L, Zou Y, Pi L, Yang Z, Wang J, Wu Z and Zhang Q 2015 Sci. Rep. 5 16419
[44] Li Y, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J, Tsirlin A A, Gegenwart P and Zhang Q 2016 Phys. Rev. Lett. 117 097201
[45] Shen Y, Li Y D, Wo H, Li Y, Shen S, Pan B, Wang Q, Walker H C, Steffens P, Boehm M, Hao Y, Quintero-Castro D L, Harriger L W, Frontzek M D, Hao L, Meng S, Zhang Q, Chen G and Zhao J 2016 Nature 540 559
[46] Xu Y, Zhang J, Li Y S, Yu Y J, Hong X C, Zhang Q M and Li S Y 2016 Phys. Rev. Lett. 117 267202
[47] Li Y, Adroja D, Bewley R I, Voneshen D, Tsirlin A A, Gegenwart P and Zhang Q 2017 Phys. Rev. Lett. 118 107202
[48] Luo Q, Hu S, Xi B, Zhao J and Wang X 2017 Phys. Rev. B 95 165110
[49] Lu Y M and Ran Y 2011 Phys. Rev. B 84 024420
[50] You Y Z, Kimchi I and Vishwanath A 2012 Phys. Rev. B 86 085145
[51] Luo Z X and Chen G 2020 SciPost Phys. Core 3 4
[52] Ross K A, Savary L, Gaulin B D and Balents L 2011 Phys. Rev. X 1 021002
[53] Rau J G and Gingras M J P 2018 Phys. Rev. B 98 054408
[54] Li Y D, Wang X and Chen G 2016 Phys. Rev. B 94 035107
[55] Luo Q, Zhao J, Kee H Y and Wang X 2020 Preprint 1910.01562
[56] Luo Q, Hu S, Zhao J, Metavitsiadis A, Eggert S andWang X 2018 Phys. Rev. B 97 214433
[57] Winter S M, Li Y, Jeschke H O and Valentí R 2016 Phys. Rev. B 93 214431
[58] Suzuki T and Suga S I 2018 Phys. Rev. B 97 134424
[59] Kanki K, Loison D and Schotte K D 2005 Eur. Phys. J. B 44 309
[60] Gohlke M, Wachtel G, Yamaji Y, Pollmann F and Kim Y B 2018 Phys. Rev. B 97 075126
[61] Janssen L, Andrade E C and Vojta M 2017 Phys. Rev. B 96 064430
[62] Joshi D G 2018 Phys. Rev. B 98 060405
[63] Gotfryd D, Rusnačko J, Wohlfeld K, Jackeli G, Chaloupka J C V and Oleś A M 2017 Phys. Rev. B 95 024426
[64] Liu K, Sadoune N, Rao N, Greitemann J and Pollet L 2021 Phys. Rev. Research 3 023016
[65] Rao N, Liu K, Machaczek M and Pollet L 2021 Preprint 2102.01103
[66] Wang S, Qi Z, Xi B, Wang W, Yu S L and Li J X 2021 Phys. Rev. B 103 054410
[67] Park S, Nagaosa N and Yang B J 2020 Nano Lett. 20 2741
[68] Gao Y H and Chen G 2020 SciPost Phys. Core 2 4
[69] VillalbaME, Gómez Albarracín F A, Rosales H D and Cabra D C 2019 Phys. Rev. B 100 245106
[70] Moriya T 1960 Phys. Rev. 120 91
[1] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[2] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[3] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[4] Crystal growth and magnetic properties of quantum spin liquid candidate KErTe2
Weiwei Liu(刘维维), Dayu Yan(闫大禹), Zheng Zhang(张政), Jianting Ji(籍建葶), Youguo Shi(石友国), Feng Jin(金峰), and Qingming Zhang(张清明). Chin. Phys. B, 2021, 30(10): 107504.
[5] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[6] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[7] Recent progress on magnetic-field studies on quantum-spin-liquid candidates
Zhen Ma(马祯), Kejing Ran(冉柯静), Jinghui Wang(王靖珲), Song Bao(鲍嵩), Zhengwei Cai(蔡正蔚), Shichao Li(李世超), Jinsheng Wen(温锦生). Chin. Phys. B, 2018, 27(10): 106101.
[8] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[9] Entanglement in a two-spin system with long-range interactions
Soltani M R, Mahdavifar S, Mahmoudi M. Chin. Phys. B, 2016, 25(8): 087501.
[10] Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3+: GdTaO4
Qingli Zhang(张庆礼), Guihua Sun(孙贵花), Kaijie Ning(宁凯杰), Chaoshu Shi(施朝淑), Wenpeng Liu(刘文鹏), Dunlu Sun(孙敦陆), Shaotang Yin(殷绍唐). Chin. Phys. B, 2016, 25(11): 117802.
[11] The luminescence enhancement of Eu3+ ion and SnO2 nanocrystal co-doped sol–gel SiO2 films
Zhang Xiao-Wei(张晓伟), Lin Tao(林涛), Xu Jun(徐骏), Xu Ling(徐岭), and Chen Kun-Ji(陈坤基) . Chin. Phys. B, 2012, 21(1): 018101.
[12] Dense coding with a two-qubit Heisenberg XYZ chain under the influence of phase decoherence
Sulayiman Simayi(苏拉依曼·司马义), Aihemaiti Abulizi(艾合买提·阿不力孜), Mushajiang Yaermaimaiti(木沙江·亚尔买买提), Cai Jiang-Tao(蔡江涛), and Qiao Pan-Pan(乔盼盼). Chin. Phys. B, 2011, 20(5): 050305.
[13] Entanglement dynamics of a Heisenberg chain with Dzyaloshinskii--Moriya interaction
Zheng Qiang(郑强), Zhang Xiao-Ping(张小平), Zhi Qi-Jun(支启军), and Ren Zhong-Zhou(任中洲). Chin. Phys. B, 2009, 18(8): 3210-3214.
[14] Effects of Dzyaloshinski--Moriya interaction and intrinsic decoherence on teleportation via a two-qubit Heisenberg XYZ model
Hu Xiao-Mian(胡小勉) and Liu Jin-Ming(刘金明). Chin. Phys. B, 2009, 18(2): 411-417.
No Suggested Reading articles found!