In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫)1, Bojun Wang(汪博筠)1, Jiachao Yang(杨家超)1, Qiwen Ran(冉淇文)1, Jian Zou(邹剑)1, Pengyu Chen(陈鹏宇)1, Li Li(李莉)1, Liping Wang(王丽平)1,2,†, and Xiaobin Niu(牛晓滨)1,‡
1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China; 2 Tianmu Lake Institute of Advanced Energy Storage Technologies, Changzhou 213300, China
Abstract Pyrite FeS2 exhibits an ultrahigh energy density (1671 W·h·kg-1, for the reaction of FeS2+4Li=Fe+2Li2S) in secondary lithium-ion batteries, but its poor cycling stability, huge volume expansion, the shuttle effect of polysulfides, and slow kinetic properties limit its practical application. In this work, we synthesize a composite structure material CoS on FeS2 surface (FeSx@CoS, 1 < x ≤ 2) by using a cobalt-containing MOF to improve its cycle stability. It is found that CoS inhibits the side reactions and adsorbs polysulfides. As a result, the modified FeS2 shows a higher discharge capacity of 577 mA·h·g-1 (919 W·h·kg-1) after 60 cycles than 484 mA·h·g-1 (778 W·h·kg-1) of bare pyrite FeS2. This efficient strategy provides a valuable step toward the realization of high cycling stability FeS2 cathode materials for secondary lithium-ion batteries and enriches the basic understanding of the influence of FeS2 interfacial stability on its electrochemical performances.
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2019Z008) and the National Natural Science Foundation of China (Grant No. 52072061).
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨) In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery 2021 Chin. Phys. B 30 088201
[1] Nitta N, Wu F, Lee J T and Yushin G 2015 Mater. Today18 252 [2] Etacheri V, Marom R, Elazari R, Salitra G and Aurbach D 2011 Energy Environ. Sci.4 3243 [3] Alias N and Mohamad A A 2015 J. Power Sources274 237 [4] Tarascon J M and Armand M 2001 Nature414 359 [5] Wang Y, Liu B N, Zhou G, Nie K H, Zhang J N, Yu X Q and Li H 2019 Chin. Phys. B28 068202 [6] Xia R S, Cui Z H, Liu B Q, Guo X X and Zhao J T 2010 Chin. Phys. Lett.27 076102 [7] Choi J W, Cheruvally G, Ahn H J, Kim K W and Ahn J H 2006 J. Power Sources163 158 [8] Butala M M, Mayo M, Doan-Nguyen V V T, Lumley M A, Göbel C, Wiaderek K M, Borkiewicz O J, Chapman K W, Chupas P J, Balasubramanian M, Laurita G, Britto S, Morris A J, Grey C P and Seshadri 2017 Chem. Mater.29 3070 [9] Wang L, Wu Z, Zou J, Gao P, Niu X, Li H and Chen L 2019 Joule3 2086 [10] Zhu Y, Fan X, Suo L, Luo C, Gao T and Wang C 2016 ACS Nano10 1529 [11] Zou J, Zhao J, Wang B, Chen S, Chen P, Ran Q, Li L, Wang X, Yao J, Li H, Huang J, Niu X and Wang L 2020 ACS Appl. Mater. Interfaces12 44850 [12] Lu B, Ning C, Shi D, Zhao Y and Zhang J 2020 Chin. Phys. B29 026201 [13] Wu F, Pollard T. P, Zhao E, Xiao Y, Olguin M, Borodin O and Yushin G 2018 Energy Environ. Sci.11 807 [14] He J, Chen Y and Manthiram A 2018 Energy Environ. Sci.11 2560 [15] He Y, Qiao Y, Chang Z, Cao X, Jia M, He P and Zhou H 2019 Angew. Chem. Int. Ed.58 11774 [16] Hu Z, Zhang K, Zhu Z, Tao Z and Chen J 2015 J. Mater. Chem. A3 12898 [17] Zhang C, Cui L, Abdolhosseinzadeh S and Heier J 2020 InfoMat2 613 [18] Li S, Jiang M, Xie Y, Xu H, Jia J and Li J 2018 Adv. Mater.30 e1706375 [19] Zhou G, Tian H, Jin Y, Tao X, Liu B, Zhang R, Seh Z W, Zhuo D, Liu Y, Sun J, Zhao J, Zu C, Wu D S, Zhang Q and Cui Y 2017 Proc. Natl. Acad. Sci. USA114 840 [20] Sun K, Cama C A, DeMayo R A, Bock D C, Tong X, Su D, Marschilok A C, Takeuchi K J, Takeuchi E S and Gan H 2016 J. Electrochem. Soc.164 A6039 [21] Zeng P, Li J, Ye M, Zhuo K and Fang Z 2017 Chem. Eur. J.23 9517 [22] Zou G, Hou H, Ge P, Huang Z, Zhao G, Yin D and Ji X 2018 Small14 e1702648 [23] Palaniselvam T, Biswal B. P, Banerjee R and Kurungot S 2013 Chem. Eur. J.19 9335 [24] Kresse G and Furthmüller J 1996 Comput. Mater. Sci.6 15 [25] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [26] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [27] Perdew J. P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [28] Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J, Yang J and Qian Y 2015 Nano Energy12 528 [29] Wu N, Lei Y, Wang Q, Wang B, Han C and Wang Y 2017 Nano Research10 2332 [30] Liu J, Wen Y, Wang Y, van Aken P A, Maier J and Yu Y 2014 Adv. Mater.26 6025 [31] Lu Z, Zhai Y, Wang N, Zhang Y, Xue P, Guo M, Tang B, Huang D, Wang W, Bai Z and Dou S 2020 Chem. Eng. J.380 e122455 [32] Jin A, Kim M J, Lee K S, Yu S H and Sung Y E 2019 Nano Research12 695 [33] Zang R, Li P, Guo X, Man Z, Zhang S, Wang C and Wang G 2019 J. Mater. Chem. A7 14051 [34] Gong W, Lin Y, Chen C, Al-Mamun M, Lu H. S, Wang G, Zhang H and Zhao H 2019 Adv. Mater.31 e1808341 [35] Shao M, Cheng Y, Zhang T, Li S, Zhang W, Zheng B, Wu J, Xiong W W, Huo F and Lu J 2018 ACS Appl. Mater. Interfaces10 33097 [36] Son S B, Yersak T A, Piper D M, Kim S C, Kang C S, Cho J S, Suh S S, Kim Y U, Oh K H and Lee S H 2014 Adv. Energy Mater.4 e1300961 [37] Tan R, Yang J, Hu J, Wang K, Zhao Y and Pan F 2016 Chem. Commun.52 986 [38] Diao Y, Xie K, Xiong S and Hong X 2013 J. Power Sources235 181 [39] Sun W, Li Y, Liu S, Guo Q, Zhu Y, Hong X, Zheng C and Xie K 2020 Nano Research13 2143
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.