Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 088201    DOI: 10.1088/1674-1056/abe9ab
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery

Xin Wang(王鑫)1, Bojun Wang(汪博筠)1, Jiachao Yang(杨家超)1, Qiwen Ran(冉淇文)1, Jian Zou(邹剑)1, Pengyu Chen(陈鹏宇)1, Li Li(李莉)1, Liping Wang(王丽平)1,2,†, and Xiaobin Niu(牛晓滨)1,‡
1 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China;
2 Tianmu Lake Institute of Advanced Energy Storage Technologies, Changzhou 213300, China
Abstract  Pyrite FeS2 exhibits an ultrahigh energy density (1671 W·h·kg-1, for the reaction of FeS2+4Li=Fe+2Li2S) in secondary lithium-ion batteries, but its poor cycling stability, huge volume expansion, the shuttle effect of polysulfides, and slow kinetic properties limit its practical application. In this work, we synthesize a composite structure material CoS on FeS2 surface (FeSx@CoS, 1 < x ≤ 2) by using a cobalt-containing MOF to improve its cycle stability. It is found that CoS inhibits the side reactions and adsorbs polysulfides. As a result, the modified FeS2 shows a higher discharge capacity of 577 mA·h·g-1 (919 W·h·kg-1) after 60 cycles than 484 mA·h·g-1 (778 W·h·kg-1) of bare pyrite FeS2. This efficient strategy provides a valuable step toward the realization of high cycling stability FeS2 cathode materials for secondary lithium-ion batteries and enriches the basic understanding of the influence of FeS2 interfacial stability on its electrochemical performances.
Keywords:  Li-free cathodes      pyrite      lithium metal batteries      first-principles calculation  
Received:  17 December 2020      Revised:  29 January 2021      Accepted manuscript online:  25 February 2021
PACS:  82.47.Aa (Lithium-ion batteries)  
  82.45.Fk (Electrodes)  
  31.15.A- (Ab initio calculations)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2019Z008) and the National Natural Science Foundation of China (Grant No. 52072061).
Corresponding Authors:  Liping Wang, Xiaobin Niu     E-mail:  lipingwang@uestc.edu.cn;xbniu@uestc.edu.cn

Cite this article: 

Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨) In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery 2021 Chin. Phys. B 30 088201

[1] Nitta N, Wu F, Lee J T and Yushin G 2015 Mater. Today 18 252
[2] Etacheri V, Marom R, Elazari R, Salitra G and Aurbach D 2011 Energy Environ. Sci. 4 3243
[3] Alias N and Mohamad A A 2015 J. Power Sources 274 237
[4] Tarascon J M and Armand M 2001 Nature 414 359
[5] Wang Y, Liu B N, Zhou G, Nie K H, Zhang J N, Yu X Q and Li H 2019 Chin. Phys. B 28 068202
[6] Xia R S, Cui Z H, Liu B Q, Guo X X and Zhao J T 2010 Chin. Phys. Lett. 27 076102
[7] Choi J W, Cheruvally G, Ahn H J, Kim K W and Ahn J H 2006 J. Power Sources 163 158
[8] Butala M M, Mayo M, Doan-Nguyen V V T, Lumley M A, Göbel C, Wiaderek K M, Borkiewicz O J, Chapman K W, Chupas P J, Balasubramanian M, Laurita G, Britto S, Morris A J, Grey C P and Seshadri 2017 Chem. Mater. 29 3070
[9] Wang L, Wu Z, Zou J, Gao P, Niu X, Li H and Chen L 2019 Joule 3 2086
[10] Zhu Y, Fan X, Suo L, Luo C, Gao T and Wang C 2016 ACS Nano 10 1529
[11] Zou J, Zhao J, Wang B, Chen S, Chen P, Ran Q, Li L, Wang X, Yao J, Li H, Huang J, Niu X and Wang L 2020 ACS Appl. Mater. Interfaces 12 44850
[12] Lu B, Ning C, Shi D, Zhao Y and Zhang J 2020 Chin. Phys. B 29 026201
[13] Wu F, Pollard T. P, Zhao E, Xiao Y, Olguin M, Borodin O and Yushin G 2018 Energy Environ. Sci. 11 807
[14] He J, Chen Y and Manthiram A 2018 Energy Environ. Sci. 11 2560
[15] He Y, Qiao Y, Chang Z, Cao X, Jia M, He P and Zhou H 2019 Angew. Chem. Int. Ed. 58 11774
[16] Hu Z, Zhang K, Zhu Z, Tao Z and Chen J 2015 J. Mater. Chem. A 3 12898
[17] Zhang C, Cui L, Abdolhosseinzadeh S and Heier J 2020 InfoMat 2 613
[18] Li S, Jiang M, Xie Y, Xu H, Jia J and Li J 2018 Adv. Mater. 30 e1706375
[19] Zhou G, Tian H, Jin Y, Tao X, Liu B, Zhang R, Seh Z W, Zhuo D, Liu Y, Sun J, Zhao J, Zu C, Wu D S, Zhang Q and Cui Y 2017 Proc. Natl. Acad. Sci. USA 114 840
[20] Sun K, Cama C A, DeMayo R A, Bock D C, Tong X, Su D, Marschilok A C, Takeuchi K J, Takeuchi E S and Gan H 2016 J. Electrochem. Soc. 164 A6039
[21] Zeng P, Li J, Ye M, Zhuo K and Fang Z 2017 Chem. Eur. J. 23 9517
[22] Zou G, Hou H, Ge P, Huang Z, Zhao G, Yin D and Ji X 2018 Small 14 e1702648
[23] Palaniselvam T, Biswal B. P, Banerjee R and Kurungot S 2013 Chem. Eur. J. 19 9335
[24] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Perdew J. P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J, Yang J and Qian Y 2015 Nano Energy 12 528
[29] Wu N, Lei Y, Wang Q, Wang B, Han C and Wang Y 2017 Nano Research 10 2332
[30] Liu J, Wen Y, Wang Y, van Aken P A, Maier J and Yu Y 2014 Adv. Mater. 26 6025
[31] Lu Z, Zhai Y, Wang N, Zhang Y, Xue P, Guo M, Tang B, Huang D, Wang W, Bai Z and Dou S 2020 Chem. Eng. J. 380 e122455
[32] Jin A, Kim M J, Lee K S, Yu S H and Sung Y E 2019 Nano Research 12 695
[33] Zang R, Li P, Guo X, Man Z, Zhang S, Wang C and Wang G 2019 J. Mater. Chem. A 7 14051
[34] Gong W, Lin Y, Chen C, Al-Mamun M, Lu H. S, Wang G, Zhang H and Zhao H 2019 Adv. Mater. 31 e1808341
[35] Shao M, Cheng Y, Zhang T, Li S, Zhang W, Zheng B, Wu J, Xiong W W, Huo F and Lu J 2018 ACS Appl. Mater. Interfaces 10 33097
[36] Son S B, Yersak T A, Piper D M, Kim S C, Kang C S, Cho J S, Suh S S, Kim Y U, Oh K H and Lee S H 2014 Adv. Energy Mater. 4 e1300961
[37] Tan R, Yang J, Hu J, Wang K, Zhao Y and Pan F 2016 Chem. Commun. 52 986
[38] Diao Y, Xie K, Xiong S and Hong X 2013 J. Power Sources 235 181
[39] Sun W, Li Y, Liu S, Guo Q, Zhu Y, Hong X, Zheng C and Xie K 2020 Nano Research 13 2143
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[10] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!