Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 088501    DOI: 10.1088/1674-1056/abea96
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Shortcut-based quantum gates on superconducting qubits in circuit QED

Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波)
School of Science, Xuchang University, Xuchang 461000, China
Abstract  Construction of optimal gate operations is significant for quantum computation. Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics (QED). Two four-level artificial atoms of Cooper-pair box circuits, having sufficient level anharmonicity, are placed in a common quantized field of circuit QED and are driven by individual classical microwaves. Without the effect of cross resonance, one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity. With the assistance of cavity bus, a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings. We further consider the gate realizations by adjusting the microwave fields. With the accessible decoherence rates, the shortcut-based gates have high fidelities. The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.
Keywords:  superconducting qubit      circuit QED      quantum gate      shortcuts to adiabaticity  
Received:  06 January 2021      Revised:  29 January 2021      Accepted manuscript online:  01 March 2021
PACS:  85.25.-j (Superconducting devices)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  03.67.Lx (Quantum computation architectures and implementations)  
  32.80.Xx (Level crossing and optical pumping)  
Fund: Project supported by the Natural Science Foundation of Henan Province, China (Grant No. 212300410388) and the "316" Project Plan of Xuchang University.
Corresponding Authors:  Zhi-Bo Feng     E-mail:  zbfeng010@163.com

Cite this article: 

Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波) Shortcut-based quantum gates on superconducting qubits in circuit QED 2021 Chin. Phys. B 30 088501

[1] Steane A 1998 Rep. Prog. Phys. 61 117
[2] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[3] Nielsen M A, Dowling M R, Gu M and Doherty A C 2006 Science 311 1133
[4] Briegel H J, Browne D E, Dür W, Raussendorf R and Van den Nest M 2009 Nat. Phys. 5 19
[5] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[6] Brandt H E 1999 Prog. Quantum Electron. 22 257
[7] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94
[8] Hicke C, Santos L F and Dykman M I 2006 Phys. Rev. A 73 012342
[9] Chen Y H, Xia Y, Chen Q Q and Song J 2015 Phys. Rev. A 91 012325
[10] Spiteri R J, Schmidt M, Ghosh J, Zahedinejad E and Sanders B C 2018 New J. Phys. 20 113009
[11] Xu G F, Tong D M and Sjöqvist E 2018 Phys. Rev. A 98 052315
[12] Dridi G, Mejatty M, Glaser S J and Sugny D 2020 Phys. Rev. A 101 012321
[13] Zhou Z, Chu S I and Han S 2002 Phys. Rev. B 66 054527
[14] Bladh K, Duty T, Gunnarsson D and Delsing P 2005 New J. Phys. 7 180
[15] Pashkin Y A, Astafiev O, Yamamoto T, Nakamura Y and Tsai J S 2009 Quantum Inf. Process. 8 55
[16] Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B 27 027401
[17] Bækegaard T, Kristensen L B, Loft N J S, Andersen C K, Petrosyan D and Zinner N T 2019 Sci. Rep. 9 13389
[18] Clarke J and Wilhelm F K 2008 Nature 453 1031
[19] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[20] Wendin G 2017 Rep. Prog. Phys. 80 106001
[21] Zhao S P, Liu Y X and Zheng D N 2018 Acta Phys. Sin. 67 228501 (in Chinese)
[22] Guo Q et al. 2018 Phys. Rev. Lett. 121 130501
[23] Yan R Y and Feng Z B 2020 Adv. Quantum Technol. 3 2000088
[24] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[25] Wallraff A et al. 2004 Nature 431 162
[26] Billangeon P M, Tsai J S and Nakamura Y 2015 Phys. Rev. B 91 094517
[27] Blais A et al. 2007 Phys. Rev. A 75 032329
[28] Fedorov A, Steffen L, Baur M, da Silva M P and Wallraff A 2012 Nature 481 170
[29] Abdumalikov Jr A A et al. 2013 Nature 496 482
[30] Hua M, Tao M J and Deng F G 2015 Sci. Rep. 5 9274
[31] Fan Y J, Zheng Z F, Zhang Y, Lu D M and Yang C P 2019 Front. Phys. 14 21602
[32] Kang Y H and Xia Y 2020 IEEE J. Sel. Top. Quantum Electron. 26 6700107
[33] Blais A, Girvin S M and Oliver W D 2020 Nat. Phys. 16 247
[34] Chirolli L and Burkard G 2008 Adv. Phys. 57 225
[35] Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 Rev. Mod. Phys. 86 361
[36] Montangero S, Calarco T and Fazio R 2007 Phys. Rev. Lett. 99 170501
[37] Gladchenko S, Olaya D, Dupont-Ferrier E, Doucot B, Ioffe L B and Gershenson M E 2009 Nat. Phys. 5 48
[38] Kamleitner I, Solinas P, Müller C, Shnirman A and Möttönen M 2011 Phys. Rev. B 83 214518
[39] Dong D, Chen C, Qi B, Petersen I R and Nori F 2015 Sci. Rep. 5 7873
[40] Wang Y, Zhang J, Wu C and You J Q and Romero G 2016 Phys. Rev. A 94 012328
[41] Xue Z Y et al. 2017 Phys. Rev. Appl. 7 054022
[42] Xu Y et al. 2018 Phys. Rev. Lett. 121 110501
[43] Kang Y H, Chen Y H, Shi Z C, Huang B H, Song J and Xia Y 2019 Ann. Phys. (Berlin) 531 1800427
[44] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[45] Bergmann K et al. 2019 J. Phys. B: At. Mol. Opt. Phys. 52 202001
[46] Siewert J, Brandes T and Falci G 2009 Phys. Rev. B 79 024504
[47] Feng Z B and Li M 2014 Opt. Commun. 319 56
[48] Kumar K S, Vepsäläinen A, Danilin S and Paraoanu G S 2016 Nat. Commun. 7 10628
[49] Torrontegui E et al. 2013 Adv. At. Mol. Opt. Phys. 62 117
[50] Campo A and Kim K 2019 New J. Phys. 21 050201
[51] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martinez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001
[52] Yu L, Xu J, Wu J L and Ji X 2017 Chin. Phys. B 26 060306
[53] Lu X J, Li M, Zhao Z Y, Zhang C L, Han H P, Feng Z B and Zhou Y Q 2017 Phys. Rev. A 96 023843
[54] Chen Y H, Shi Z C, Song J, Xia Y and Zheng S B 2018 Ann. Phys. (Berlin) 530 1700351
[55] Wang T et al. 2018 New J. Phys. 20 065003
[56] Ma L H, Kang Y H, Shi Z C, Huang B H, Song J and Xia Y 2019 Quantum Inf. Process. 18 65
[57] Yan T et al. 2019 Phys. Rev. Lett. 122 080501
[58] Vepsäläinen A, Danilin S and Paraoanu G S 2019 Sci. Adv. 5 eaau5999
[59] Yu W R and Ji X 2019 Acta Phys. Sin. 68 030302 (in Chinese)
[60] Yan R Y, Feng Z B, Li M, Zhang C L and Zhao Z Y 2020 Ann. Phys. (Berlin) 532 1900613
[61] Yan R Y and Feng Z B 2021 Opt. Laser Technol. 135 106699
[62] Vion D et al. 2002 Science 296 886
[63] Majer J et al. 2007 Nature 449 443
[64] Feng Z B 2012 Phys. Rev. A 85 014302
[65] Feng Z B 2008 Phys. Lett. A 372 3773
[66] Lewis H R and Riesenfeld W B 1969 J. Math. Phys. 10 1458
[67] Liang Y, Wu Q C, Su S L, Ji X and Zhang S 2015 Phys. Rev. A 91 032304
[68] Vitanov N V and Stenholm S 1997 Phys. Rev. A 55 648
[69] Feng Z B, Lu X J, Li M, Yan R Y and Zhou Y Q 2007 New J. Phys. 19 123023
[70] Schuster D I et al. 2007 Nature 445 515
[71] Liang Y, Ji X, Wang H F and Zhang S 2015 Laser Phys. Lett. 12 115201
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[5] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[6] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[7] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[8] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
[9] Hardware for multi-superconducting qubit control and readout
Zhan Wang(王战), Hai Yu(于海), Rongli Liu(刘荣利), Xiao Ma(马骁), Xueyi Guo(郭学仪), Zhongcheng Xiang(相忠诚), Pengtao Song(宋鹏涛), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(11): 110305.
[10] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[11] Manipulation of superconducting qubit with direct digital synthesis
Zhi-Yuan Li(李志远), Hai-Feng Yu(于海峰), Xin-Sheng Tan(谭新生), Shi-Ping Zhao(赵士平), Yang Yu(于扬). Chin. Phys. B, 2019, 28(9): 098505.
[12] Simulation of the influence of imperfections on dynamical decoupling of a superconducting qubit
Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Chang-Hao Zhao(赵昌昊), Yong-Cheng He(何永成), Da Xu(徐达), Wei Chen(陈炜). Chin. Phys. B, 2019, 28(6): 060201.
[13] Nb-based Josephson parametric amplifier for superconducting qubit measurement
Fei-Fan Su(宿非凡), Zi-Ting Wang(王子婷), Hui-Kai Xu(徐晖凯), Shou-Kuan Zhao(赵寿宽), Hai-Sheng Yan(严海生), Zhao-Hua Yang(杨钊华), Ye Tian(田野), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2019, 28(11): 110303.
[14] Cavity-induced ATS effect on a superconducting Xmon qubit
Xueyi Guo(郭学仪), Hui Deng(邓辉), Jianghao Ding(丁江浩), Hekang Li(李贺康), Pengtao Song(宋鹏涛), Zhan Wang(王战), Luhong Su(苏鹭红), Yanjun Liu(刘彦军), Zhongcheng Xiang(相忠诚), Jie Li(李洁), Yirong Jin(金贻荣), Yuxi Liu(刘玉玺), Dongning Zheng(郑东宁). Chin. Phys. B, 2018, 27(8): 084202.
[15] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
No Suggested Reading articles found!