INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Shortcut-based quantum gates on superconducting qubits in circuit QED |
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波)† |
School of Science, Xuchang University, Xuchang 461000, China |
|
|
Abstract Construction of optimal gate operations is significant for quantum computation. Here an efficient scheme is proposed for performing shortcut-based quantum gates on superconducting qubits in circuit quantum electrodynamics (QED). Two four-level artificial atoms of Cooper-pair box circuits, having sufficient level anharmonicity, are placed in a common quantized field of circuit QED and are driven by individual classical microwaves. Without the effect of cross resonance, one-qubit NOT gate and phase gate in a decoupled atom can be implemented using the invariant-based shortcuts to adiabaticity. With the assistance of cavity bus, a one-step SWAP gate can be obtained within a composite qubit-photon-qubit system by inversely engineering the classical drivings. We further consider the gate realizations by adjusting the microwave fields. With the accessible decoherence rates, the shortcut-based gates have high fidelities. The present strategy could offer a promising route towards fast and robust quantum computation with superconducting circuits experimentally.
|
Received: 06 January 2021
Revised: 29 January 2021
Accepted manuscript online: 01 March 2021
|
PACS:
|
85.25.-j
|
(Superconducting devices)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
32.80.Xx
|
(Level crossing and optical pumping)
|
|
Fund: Project supported by the Natural Science Foundation of Henan Province, China (Grant No. 212300410388) and the "316" Project Plan of Xuchang University. |
Corresponding Authors:
Zhi-Bo Feng
E-mail: zbfeng010@163.com
|
Cite this article:
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波) Shortcut-based quantum gates on superconducting qubits in circuit QED 2021 Chin. Phys. B 30 088501
|
[1] Steane A 1998 Rep. Prog. Phys. 61 117 [2] Bennett C H and DiVincenzo D P 2000 Nature 404 247 [3] Nielsen M A, Dowling M R, Gu M and Doherty A C 2006 Science 311 1133 [4] Briegel H J, Browne D E, Dür W, Raussendorf R and Van den Nest M 2009 Nat. Phys. 5 19 [5] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45 [6] Brandt H E 1999 Prog. Quantum Electron. 22 257 [7] Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94 [8] Hicke C, Santos L F and Dykman M I 2006 Phys. Rev. A 73 012342 [9] Chen Y H, Xia Y, Chen Q Q and Song J 2015 Phys. Rev. A 91 012325 [10] Spiteri R J, Schmidt M, Ghosh J, Zahedinejad E and Sanders B C 2018 New J. Phys. 20 113009 [11] Xu G F, Tong D M and Sjöqvist E 2018 Phys. Rev. A 98 052315 [12] Dridi G, Mejatty M, Glaser S J and Sugny D 2020 Phys. Rev. A 101 012321 [13] Zhou Z, Chu S I and Han S 2002 Phys. Rev. B 66 054527 [14] Bladh K, Duty T, Gunnarsson D and Delsing P 2005 New J. Phys. 7 180 [15] Pashkin Y A, Astafiev O, Yamamoto T, Nakamura Y and Tsai J S 2009 Quantum Inf. Process. 8 55 [16] Liu W Y, Zheng D N and Zhao S P 2018 Chin. Phys. B 27 027401 [17] Bækegaard T, Kristensen L B, Loft N J S, Andersen C K, Petrosyan D and Zinner N T 2019 Sci. Rep. 9 13389 [18] Clarke J and Wilhelm F K 2008 Nature 453 1031 [19] Devoret M H and Schoelkopf R J 2013 Science 339 1169 [20] Wendin G 2017 Rep. Prog. Phys. 80 106001 [21] Zhao S P, Liu Y X and Zheng D N 2018 Acta Phys. Sin. 67 228501 (in Chinese) [22] Guo Q et al. 2018 Phys. Rev. Lett. 121 130501 [23] Yan R Y and Feng Z B 2020 Adv. Quantum Technol. 3 2000088 [24] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320 [25] Wallraff A et al. 2004 Nature 431 162 [26] Billangeon P M, Tsai J S and Nakamura Y 2015 Phys. Rev. B 91 094517 [27] Blais A et al. 2007 Phys. Rev. A 75 032329 [28] Fedorov A, Steffen L, Baur M, da Silva M P and Wallraff A 2012 Nature 481 170 [29] Abdumalikov Jr A A et al. 2013 Nature 496 482 [30] Hua M, Tao M J and Deng F G 2015 Sci. Rep. 5 9274 [31] Fan Y J, Zheng Z F, Zhang Y, Lu D M and Yang C P 2019 Front. Phys. 14 21602 [32] Kang Y H and Xia Y 2020 IEEE J. Sel. Top. Quantum Electron. 26 6700107 [33] Blais A, Girvin S M and Oliver W D 2020 Nat. Phys. 16 247 [34] Chirolli L and Burkard G 2008 Adv. Phys. 57 225 [35] Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 Rev. Mod. Phys. 86 361 [36] Montangero S, Calarco T and Fazio R 2007 Phys. Rev. Lett. 99 170501 [37] Gladchenko S, Olaya D, Dupont-Ferrier E, Doucot B, Ioffe L B and Gershenson M E 2009 Nat. Phys. 5 48 [38] Kamleitner I, Solinas P, Müller C, Shnirman A and Möttönen M 2011 Phys. Rev. B 83 214518 [39] Dong D, Chen C, Qi B, Petersen I R and Nori F 2015 Sci. Rep. 5 7873 [40] Wang Y, Zhang J, Wu C and You J Q and Romero G 2016 Phys. Rev. A 94 012328 [41] Xue Z Y et al. 2017 Phys. Rev. Appl. 7 054022 [42] Xu Y et al. 2018 Phys. Rev. Lett. 121 110501 [43] Kang Y H, Chen Y H, Shi Z C, Huang B H, Song J and Xia Y 2019 Ann. Phys. (Berlin) 531 1800427 [44] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003 [45] Bergmann K et al. 2019 J. Phys. B: At. Mol. Opt. Phys. 52 202001 [46] Siewert J, Brandes T and Falci G 2009 Phys. Rev. B 79 024504 [47] Feng Z B and Li M 2014 Opt. Commun. 319 56 [48] Kumar K S, Vepsäläinen A, Danilin S and Paraoanu G S 2016 Nat. Commun. 7 10628 [49] Torrontegui E et al. 2013 Adv. At. Mol. Opt. Phys. 62 117 [50] Campo A and Kim K 2019 New J. Phys. 21 050201 [51] Guéry-Odelin D, Ruschhaupt A, Kiely A, Torrontegui E, Martinez-Garaot S and Muga J G 2019 Rev. Mod. Phys. 91 045001 [52] Yu L, Xu J, Wu J L and Ji X 2017 Chin. Phys. B 26 060306 [53] Lu X J, Li M, Zhao Z Y, Zhang C L, Han H P, Feng Z B and Zhou Y Q 2017 Phys. Rev. A 96 023843 [54] Chen Y H, Shi Z C, Song J, Xia Y and Zheng S B 2018 Ann. Phys. (Berlin) 530 1700351 [55] Wang T et al. 2018 New J. Phys. 20 065003 [56] Ma L H, Kang Y H, Shi Z C, Huang B H, Song J and Xia Y 2019 Quantum Inf. Process. 18 65 [57] Yan T et al. 2019 Phys. Rev. Lett. 122 080501 [58] Vepsäläinen A, Danilin S and Paraoanu G S 2019 Sci. Adv. 5 eaau5999 [59] Yu W R and Ji X 2019 Acta Phys. Sin. 68 030302 (in Chinese) [60] Yan R Y, Feng Z B, Li M, Zhang C L and Zhao Z Y 2020 Ann. Phys. (Berlin) 532 1900613 [61] Yan R Y and Feng Z B 2021 Opt. Laser Technol. 135 106699 [62] Vion D et al. 2002 Science 296 886 [63] Majer J et al. 2007 Nature 449 443 [64] Feng Z B 2012 Phys. Rev. A 85 014302 [65] Feng Z B 2008 Phys. Lett. A 372 3773 [66] Lewis H R and Riesenfeld W B 1969 J. Math. Phys. 10 1458 [67] Liang Y, Wu Q C, Su S L, Ji X and Zhang S 2015 Phys. Rev. A 91 032304 [68] Vitanov N V and Stenholm S 1997 Phys. Rev. A 55 648 [69] Feng Z B, Lu X J, Li M, Yan R Y and Zhou Y Q 2007 New J. Phys. 19 123023 [70] Schuster D I et al. 2007 Nature 445 515 [71] Liang Y, Ji X, Wang H F and Zhang S 2015 Laser Phys. Lett. 12 115201 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|