1 Department of Physics, Xiamen University, Xiamen 361005, China; 2 School of Science, Guangxi University of Science and Technology, Liuzhou 545006, China
Abstract We build a double quantum-dot system with Coulomb coupling and aim at studying connections among the entropy production, free energy, and information flow. By utilizing concepts in stochastic thermodynamics and graph theory analysis, Clausius and nonequilibrium free energy inequalities are built to interpret local second law of thermodynamics for subsystems. A fundamental set of cycle fluxes and affinities is identified to decompose two inequalities by using Schnakenberg's network theory. Results show that the thermodynamic irreversibility has energy-related and information-related contributions. A global cycle associated with the feedback-induced information flow would pump electrons against the bias voltage, which implements a Maxwell demon.
(Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)
Fund: Project supported by the National Natural Science Foundation (Grant No. 11805159), the First Batch of National First-class Undergraduate Courses of China (2020), the Natural Science Foundation of Fujian Province, China (Grant No. 2019J05003), and Teaching Research Program of Thermodynamics and Statistical Physics in the Institution of Higher Education of China (2019).
Corresponding Authors:
Shanhe Su, Yanchao Zhang
E-mail: sushanhe@xmu.edu.cn;zhangyanchao@gxust.edu.cn
Cite this article:
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超) Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling 2021 Chin. Phys. B 30 080501
[1] Callen H B 1985 Thermodynamics and an Introduction to Thermostatistics (New York: John Wiley & Sons) [2] Gao T F, Zhang Y and Chen J C 2009 Chin. Phys18 3279 [3] Onsager L 1931 Phys. Rev. B37 405 [4] Gaspard P 2013 New J. Phys.15 115014 [5] Benenti G, Casati G, Saito K and Whitney R S 2017 Phys. Rep.694 1 [6] Ren J 2017 Front. Phys.12 120505 [7] Andrieux D and Gaspard P 2008 Proc. Natl. Acad. USA105 9516 [8] Schnakenberg J 1976 Rev. Mod. Phys.48 571 [9] Horowitz J M and Esposito M 2014 Phys. Rev. X4 031015 [10] Yamamoto S, Ito S, Shiraishi N and Sagawa T 2016 Phys. Rev. E94 052121 [11] Seifert U 2012 Rep. Prog. Phys.75 126001 [12] Einax M and Nitzan A 2016 J. Chem. Phys.145 014108 [13] Andrieux D and Gaspard P 2007 J. Stat. Phys.127 107 [14] Taniguchi N 2018 Phys. Rev. B97 155404 [15] Anders J and Esposito M 2017 New J. Phys.19 010201 [16] Peusner L 1986 Studies in Network Thermodynamics (Amsterdam: Elsevier) [17] Peusner L 1982 J. Chem. Phys.77 5500 [18] Peusner L 1985 J. Chem. Phys.83 1276 [19] Peusner L, Mikulecky D C, Bunow B and Caplan S R 1985 J. Chem. Phys.83 5559 [20] Peusner L 1983 J. Theor. Biol.102 7 [21] Peusner L 1985 J. Theor. Biol.115 319 [22] Peusner L 1970 The Principles of Network Thermodynamics and Biophysical Applications PhD Dessertation (Harvard University) (reprinted by Entropy: Lincoln, MA, 1987) [23] Crooks G E 1998 J. Stat. Phys.90 1481 [24] Crooks G E 1999 Phys. Rev. E60 2721 [25] Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys.81 1665 [26] Vaikuntanathan S and Jarzynski C 2008 Phys. Rev. Lett.100 190601 [27] Jarzynski C 1997 Phys. Rev. Lett.78 2690 [28] Huber G, Schmidt-Kaler F, Deffner and Lutz S E 2008 Phys. Rev. Lett.101 070403 [29] Esposito M and Van den Broeck C 2011 Europhys. Lett.95 40004 [30] Esposito M, Lindenberg K and Van den Broeck C 2010 New J. Phys.12 013013 [31] Ptaszyński K and Esposito M 2019 Phys. Rev. Lett.122 150603 [32] Deffner S and Jarzynski C 2013 Phys. Rev. X3 041003 [33] Lin Z, Shen W, Su S and Chen J 2020 Acta Phys. Sin.69 130501 (in Chinese) [34] Miyahara H and Aihara K 2018 Phys. Rev. E98 042138 [35] Sagawa T and Ueda M 2010 Phys. Rev. Lett.104 090602 [36] Barato A C and Seifert U 2014 Phys. Rev. Lett.112 090601 [37] Peng P and Duan C 2016 Chin. Phys. Lett.33 080501 [38] Cao L, Ke P, Qiao L Y and Zheng Z G 2014 Chin. Phys.23 070501 [39] Horowitz J M 2015 J. Stat. Mech. Theor. Exp.2015 P03006 [40] Chapman A and Miyake A 2015 Phys. Rev. E92 062125 [41] Soltanmanesh A and Shafiee A 2019 Eur. Phys. J. Plus134 282 [42] Marconi U M B, Puglisi A and Maggi C 2017 Sci. Rep.7 46496 [43] Bertini L, De Sole A, Gabrielli D, Jona-Lasinio G and Landim C 2015 J. Stat. Mech. Theor. Exp.2015 P10018 [44] Zhang Y, Huang C, Wang J, Lin G and Chen J 2015 Energy85 200 [45] Sánchez R and Bütiker M 2011 Phys. Rev. B83 085428 [46] Chen X and Wang C 2019 Chin. Phys. B28 050502 [47] Wang C and Xu D 2020 Chin. Phys. B29 080504 [48] Lu X, Zhang J and Xia Y 2021 Chin. Phys. B30 020301 [49] Orszag M 2016 Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence (New York: Springer) [50] Rodrigo R S 2007 Spin and Charge Transport through Driven Quantum Dot Systems and Their Fluctuations (PhD Dessertation, Universidad Autónoma de Madrid) [51] Sothmann B, Sánchez R and Jordan A N 2015 Nanotechology26 032001 [52] Spohn H 1978 J. Math. Phys.19 1227 [53] Esposito M, Harbola U and Mukamel S 2007 Phys. Rev. E76 031132 [54] Schaller G 2014 Open Quantum Systems Far from Equilibrium (New York: Springer) [55] Shi Z, Fu J, Qin W and He J 2017 Chin. Phys. Lett.34 110501 [56] Shiraishi N and Sagawa T 2015 Phys. Rev. E91 012130
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.