Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 080501    DOI: 10.1088/1674-1056/abe119
GENERAL Prev   Next  

Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling

Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超)
1 Department of Physics, Xiamen University, Xiamen 361005, China;
2 School of Science, Guangxi University of Science and Technology, Liuzhou 545006, China
Abstract  We build a double quantum-dot system with Coulomb coupling and aim at studying connections among the entropy production, free energy, and information flow. By utilizing concepts in stochastic thermodynamics and graph theory analysis, Clausius and nonequilibrium free energy inequalities are built to interpret local second law of thermodynamics for subsystems. A fundamental set of cycle fluxes and affinities is identified to decompose two inequalities by using Schnakenberg's network theory. Results show that the thermodynamic irreversibility has energy-related and information-related contributions. A global cycle associated with the feedback-induced information flow would pump electrons against the bias voltage, which implements a Maxwell demon.
Keywords:  quantum dot      nonequilibrium free energy      information      graph theory analysis  
Received:  30 December 2020      Revised:  20 January 2021      Accepted manuscript online:  29 January 2021
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  05.70.-a (Thermodynamics)  
  05.60.Gg (Quantum transport)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: Project supported by the National Natural Science Foundation (Grant No. 11805159), the First Batch of National First-class Undergraduate Courses of China (2020), the Natural Science Foundation of Fujian Province, China (Grant No. 2019J05003), and Teaching Research Program of Thermodynamics and Statistical Physics in the Institution of Higher Education of China (2019).
Corresponding Authors:  Shanhe Su, Yanchao Zhang     E-mail:  sushanhe@xmu.edu.cn;zhangyanchao@gxust.edu.cn

Cite this article: 

Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超) Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling 2021 Chin. Phys. B 30 080501

[1] Callen H B 1985 Thermodynamics and an Introduction to Thermostatistics (New York: John Wiley & Sons)
[2] Gao T F, Zhang Y and Chen J C 2009 Chin. Phys 18 3279
[3] Onsager L 1931 Phys. Rev. B 37 405
[4] Gaspard P 2013 New J. Phys. 15 115014
[5] Benenti G, Casati G, Saito K and Whitney R S 2017 Phys. Rep. 694 1
[6] Ren J 2017 Front. Phys. 12 120505
[7] Andrieux D and Gaspard P 2008 Proc. Natl. Acad. USA 105 9516
[8] Schnakenberg J 1976 Rev. Mod. Phys. 48 571
[9] Horowitz J M and Esposito M 2014 Phys. Rev. X 4 031015
[10] Yamamoto S, Ito S, Shiraishi N and Sagawa T 2016 Phys. Rev. E 94 052121
[11] Seifert U 2012 Rep. Prog. Phys. 75 126001
[12] Einax M and Nitzan A 2016 J. Chem. Phys. 145 014108
[13] Andrieux D and Gaspard P 2007 J. Stat. Phys. 127 107
[14] Taniguchi N 2018 Phys. Rev. B 97 155404
[15] Anders J and Esposito M 2017 New J. Phys. 19 010201
[16] Peusner L 1986 Studies in Network Thermodynamics (Amsterdam: Elsevier)
[17] Peusner L 1982 J. Chem. Phys. 77 5500
[18] Peusner L 1985 J. Chem. Phys. 83 1276
[19] Peusner L, Mikulecky D C, Bunow B and Caplan S R 1985 J. Chem. Phys. 83 5559
[20] Peusner L 1983 J. Theor. Biol. 102 7
[21] Peusner L 1985 J. Theor. Biol. 115 319
[22] Peusner L 1970 The Principles of Network Thermodynamics and Biophysical Applications PhD Dessertation (Harvard University) (reprinted by Entropy: Lincoln, MA, 1987)
[23] Crooks G E 1998 J. Stat. Phys. 90 1481
[24] Crooks G E 1999 Phys. Rev. E 60 2721
[25] Esposito M, Harbola U and Mukamel S 2009 Rev. Mod. Phys. 81 1665
[26] Vaikuntanathan S and Jarzynski C 2008 Phys. Rev. Lett. 100 190601
[27] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[28] Huber G, Schmidt-Kaler F, Deffner and Lutz S E 2008 Phys. Rev. Lett. 101 070403
[29] Esposito M and Van den Broeck C 2011 Europhys. Lett. 95 40004
[30] Esposito M, Lindenberg K and Van den Broeck C 2010 New J. Phys. 12 013013
[31] Ptaszyński K and Esposito M 2019 Phys. Rev. Lett. 122 150603
[32] Deffner S and Jarzynski C 2013 Phys. Rev. X 3 041003
[33] Lin Z, Shen W, Su S and Chen J 2020 Acta Phys. Sin. 69 130501 (in Chinese)
[34] Miyahara H and Aihara K 2018 Phys. Rev. E 98 042138
[35] Sagawa T and Ueda M 2010 Phys. Rev. Lett. 104 090602
[36] Barato A C and Seifert U 2014 Phys. Rev. Lett. 112 090601
[37] Peng P and Duan C 2016 Chin. Phys. Lett. 33 080501
[38] Cao L, Ke P, Qiao L Y and Zheng Z G 2014 Chin. Phys. 23 070501
[39] Horowitz J M 2015 J. Stat. Mech. Theor. Exp. 2015 P03006
[40] Chapman A and Miyake A 2015 Phys. Rev. E 92 062125
[41] Soltanmanesh A and Shafiee A 2019 Eur. Phys. J. Plus 134 282
[42] Marconi U M B, Puglisi A and Maggi C 2017 Sci. Rep. 7 46496
[43] Bertini L, De Sole A, Gabrielli D, Jona-Lasinio G and Landim C 2015 J. Stat. Mech. Theor. Exp. 2015 P10018
[44] Zhang Y, Huang C, Wang J, Lin G and Chen J 2015 Energy 85 200
[45] Sánchez R and Bütiker M 2011 Phys. Rev. B 83 085428
[46] Chen X and Wang C 2019 Chin. Phys. B 28 050502
[47] Wang C and Xu D 2020 Chin. Phys. B 29 080504
[48] Lu X, Zhang J and Xia Y 2021 Chin. Phys. B 30 020301
[49] Orszag M 2016 Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence (New York: Springer)
[50] Rodrigo R S 2007 Spin and Charge Transport through Driven Quantum Dot Systems and Their Fluctuations (PhD Dessertation, Universidad Autónoma de Madrid)
[51] Sothmann B, Sánchez R and Jordan A N 2015 Nanotechology 26 032001
[52] Spohn H 1978 J. Math. Phys. 19 1227
[53] Esposito M, Harbola U and Mukamel S 2007 Phys. Rev. E 76 031132
[54] Schaller G 2014 Open Quantum Systems Far from Equilibrium (New York: Springer)
[55] Shi Z, Fu J, Qin W and He J 2017 Chin. Phys. Lett. 34 110501
[56] Shiraishi N and Sagawa T 2015 Phys. Rev. E 91 012130
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[4] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[7] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[10] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[13] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[14] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[15] Bioinspired tactile perception platform with information encryption function
Zhi-Wen Shi(石智文), Zheng-Yu Ren(任征宇), Wei-Sheng Wang(王伟胜), Hui Xiao(肖惠), Yu-Heng Zeng(曾俞衡), and Li-Qiang Zhu(竺立强). Chin. Phys. B, 2022, 31(9): 098506.
No Suggested Reading articles found!