Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 073103    DOI: 10.1088/1674-1056/abe1a0
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading

Dong-Lin Luan(栾栋林)1, Ya-Bin Wang(王亚斌)1,†, Guo-Meng Li(李果蒙)2, Lei Yuan(袁磊)3, and Jun Chen(陈军)4,5,‡
1 School of Mechatronic Engineering, Beijing Institute of Technology, Beijing 100081, China;
2 System Engineering Research Institute, Beijing 100094, China;
3 Beijing Special Vehicle Research Institute, Beijing 100072, China;
4 Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
5 Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract  Impurity agglomeration has a significant influence on shock response of metal materials. In this paper, the mechanism of Ti-clusters in metal Al under shock loading is investigated by non-equilibrium molecular dynamics simulations. Our results show that the Ti-cluster has obvious effects on the dislocation initiation and melting of bulk Al. First, the Ti clusters induces the strain concentrate and leads the dislocations to be initiated from the interface of Ti cluster. Second, dislocation distribution from the Ti-cluster model results in a formation of a grid-like structure, while the dislocation density is reduced compared with that from the perfect Al model. Third, the critical shock velocity of dislocation from the Ti-cluster model is lower than from perfect Al model. Furthermore, it is also found that the temperature near the interface of Ti-cluster is 100 K-150 K higher than in the other areas, which means that Ti-cluster interface melts earlier than the bulk area.
Keywords:  molecular dynamics      impurity cluster      dislocation      shock loading  
Received:  13 November 2020      Revised:  28 January 2021      Accepted manuscript online:  01 February 2021
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
  36.40.-c (Atomic and molecular clusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12072044).
Corresponding Authors:  Ya-Bin Wang, Jun Chen     E-mail:  wangyabin@bit.edu.cn;jun_chen@iapcm.ac.cn

Cite this article: 

Dong-Lin Luan(栾栋林), Ya-Bin Wang(王亚斌), Guo-Meng Li(李果蒙), Lei Yuan(袁磊), and Jun Chen(陈军) Plasticity and melting characteristics of metal Al with Ti-cluster under shock loading 2021 Chin. Phys. B 30 073103

[1] Xiao D, Chen X, Zou D, Zhou P, Yang T and He L 2019 J. Nucl. Mater. 517 225
[2] Wei Y D, Yu Y G, Ji X J and Peng H R 2017 Mater. Sci. Forum 898 1414
[3] Ruschau J J, Nicholas T and Thompson S R 2001 Int. J. Impact Eng. 25 233
[4] Zhu X, Schoenitz M and Dreizin E L 2003 MRS Proceedings 800 A3
[5] Klansky J, Nic J and Mikkola D 1994 J. Mater. Res. 9 255
[6] Rigg P, Greeff C, Knudson M, Gray G and Hixson R S 2010 J. Appl. Phys. 106 123532
[7] Asay J R and Gupta Y M 1972 J. Appl. Phys. 43 2220
[8] Tokuda S and Kawahara H 1972 J. Japan Institute Metals 36 8
[9] Zou L, Yang C, Lei Y, Zakharov D, Wiezorek J M K, Su D, Yin Q, Li J, Liu Z, Stach E A, Yang J C, Qi L, Wang G and Zhou G 2018 Nat. Mater. 17 56
[10] Ruzic J, Emura S, Ji X and Watanabe I 2018 Mater. Sci. Eng. A 718 48
[11] Hippsley C A, Knott J F and Edwards B C 1980 Acta Metallurgica 28 869
[12] Hippsley C A, Knott J F and Edwards B C 1982 Acta Metallurgica 30 641
[13] Okamoto P R and Rehn L E 1979 J. Nucl. Mater. 83 2
[14] Koike J and Mabuchi M 1995 J. Mater. Res. 10 133
[15] Chen J M, Sun T S, Viswanadham R K and Green J A S 1977 Metallurgical Transactions A 8 1935
[16] Viswanadham R, Sun T and Green J 1980 Metallurgical and Materials Transactions A 11 85
[17] Wang Y, Liu Z, Sun B and Wang D 2012 Adv. Mater. Res. 581-582 504
[18] Kadau K, Germann T C, Lomdahl P S and Holian B L 2002 AIP Conf. Proc. 620 351
[19] Mintmire J, Robertson D and White C 1994 Phys. Rev. B 49 14859
[20] Li G, Wang Y, Xiang M, Liao Y, Wang K and Chen J 2018 Int. J. Mech. Sci. 141 143
[21] Liao Y, Xiang M, Li G, Wang K, Zhang X and Chen J 2018 Mech. Mater. 126 13
[22] Plimpton S J 1995 J. Comput. Phys. 117 1
[23] Zope R and Mishin Y 2003 Phys. Rev. B 68 024102
[24] Liao Y, Xiang M, Zeng X and Chen J 2015 Mech. Mater. 84 12
[25] Xiang M, Cui J, Yang Y, Liao Y, Wang K, Chen Y and Chen J 2017 Int. J. Plast. 97 24
[26] Wang K, Xiao S, Deng H, Zhu W and Hu W 2014 Int. J. Plast. 59 180
[27] Xiang M, Hu H, Chen J and Long Y 2013 Model. Simul. Mater. Sci. Eng. 21 55005
[28] Stukowski A 2010 Model. Simul. Mater. Sci. Eng. 18 15012
[29] Stukowski A 2012 Model. Simul. Mater. Sci. Eng. 20 045021
[30] Stukowski A 2014 J. Mech. Phys. Solids 70 314
[31] Reed E J, Fried L E and Joannopoulos J D 2003 Phys. Rev. Lett. 90 235503
[32] Mcqueen R G, Marsh S P, Taylor J W, Fritz J N and Carter W J 1970 High-Velocity Impact Phenomena (Academic Press) pp. 293-417
[33] Marsh S P 1980 LASL shock Hugoniot data (California: University of California Press) pp. 162-165
[34] Mishin Y, Asta M and Li J 2010 Acta Mater. 58 1117
[35] Wang J and Gong H 2014 Int. J. Hydrogen Energy 39 6068
[36] Zhou H, Zhang Y, Liu Y, Kohyama M, Yin P and Lu G 2009 J. Phys.: Condens. Matter 21 175407
[37] van Swygenhoven H 2006 Nat. Mater. 5 841
[38] Cahn J 1957 Acta Metallurgica 5 169
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[4] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[7] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[8] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[9] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[10] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[11] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[12] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[13] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[14] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[15] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
No Suggested Reading articles found!