|
|
State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method |
Juan Zhao(赵娟)1, Da-Guang Yue(岳大光)1, Lu-Lu Zhang(张路路)1, Shang Gao(高尚)1, Zhong-Bo Liu(刘中波)1, and Qing-Tian Meng(孟庆田)2,† |
1 School of Science, Shandong Jiaotong University, Jinan 250357, China; 2 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China |
|
|
Abstract State-to-state time-dependent quantum dynamics calculations have been carried out to study ${\rm H}+{\rm DH}^{\prime} \rightarrow {\rm HH}^{\prime}+{\rm D/HD}+{\rm H}^{\prime}$ reactions on BKMP2 surface. The total integral cross sections of both reactions are in good agreement with earlier theoretical and experimental results, moreover the rotational state-resolved reaction cross sections of ${\rm H}+{\rm DH}^{\prime} \rightarrow {\rm HH}^{\prime}+{\rm D}$ at collision energy $E_{\rm C} =0.5$ eV are closer to the experimental values than the ones calculated by Chao et al. [J. Chem. Phys. 117 8341 (2002)], which proves the higher precision of the quantum calculation in this work. In addition, the state-to-state dynamics of ${\rm H}+{\rm DH}^{\prime} \rightarrow {\rm HD}^{\prime}+{\rm H}$ reaction channel have been discussed in detail, and the differences of the micro-mechanism of the two reaction channels have been revealed and analyzed clearly.
|
Received: 12 March 2021
Revised: 01 April 2021
Accepted manuscript online: 07 April 2021
|
PACS:
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
34.50.-s
|
(Scattering of atoms and molecules)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504206 and 12004216), the Ph. D. Research Start-up Fund of Shandong Jiaotong University (Grant No. BS2020025), and the Shandong Natural Science Foundation, China (Grant Nos. ZR2020MF102 and ZR2020QA064). |
Corresponding Authors:
Qing-Tian Meng
E-mail: qtmeng@sdnu.edu.cn
|
Cite this article:
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田) State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method 2021 Chin. Phys. B 30 073102
|
[1] Wrede E, Schnieder L, Welge K H, Aoiz F J, Bañares L, Castillo J F, Haya B M and Herrero V J 1999 J. Chem. Phys. 110 9971 [2] Harich S A, Dai D, Wang C C, Yang X, Chao S D and Skodje R T 2002 Nature 419 281 [3] Harich S A, Dai D, Yang X, Chao S D and Skodje R T 2002 J. Chem. Phys. 116 4769 [4] Ausfelder F, Pomerantz A E, Zare R N, Althorpe S C, Aoiz F J, Bañares L and Castillo J F 2004 J. Chem. Phys. 120 3255 [5] Pomerantz A E, Ausfelder F, Zare R N, Marcos J C J, Althorpe S C, Rábanos V S, Aoiz F J, Bañares L and Castillo J F 2004 J. Chem. Phys. 121 6587 [6] Koszinowski K, Goldberg N T, Pomerantz A E, Zare R N, Juanes-Marcos J C and Althorpe S C 2005 J. Chem. Phys. 123 054306 [7] Wrede E and Schnieder L 1997 J. Chem. Phys. 107 786 [8] Sun J C, Choi B H, Poe R T and Tang K T 1980 Phys. Rev. Lett. 44 1211 [9] Haug K, Schwenke D W, Shima Y, Truhlar D G, Zhang J and Kouri D J 1986 J. Phys. Chem. 90 6757 [10] Althorpe S C, Fernández Alonso F, Bean B D, Ayers J D, Pomerantz A E, Zare R N and Wrede E 2002 Nature 416 67 [11] Mielke S L, Peterson K A, Schwenke D W, Garrett B C, Truhlar D G, Michael J V, Su M C and Sutherland J W 2003 Phys. Rev. Lett. 91 063201 [12] Michael J V, Su M C and Sutherland J W 2004 J. Phys. Chem. A 108 432 [13] Vaníček J, Miller W H, Castillo J F and Aoiz F J 2005 J. Chem. Phys. 123 054108 [14] Juanes-Marcos J C and Althorpe S C 2005 J. Chem. Phys. 122 204324 [15] Hankel M, Smith S C, Allan R J, Gray S K and Kurti G G B 2006 J. Chem. Phys. 125 164303 [16] Chu T S, Han K L, Hankel M and Kurti G G B 2007 J. Chem. Phys. 126 214303 [17] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483 [18] Truhlar D G and Horowitz C J 1978 J. Chem. Phys. 68 2466 [19] Varandas A J C, Brown F B, Mead C A, Truhlar D G and Blais N C 1987 J. Chem. Phys. 86 6258 [20] Boothroyd A I, Keogh W J, Martin P G and Peterson M R 1991 J. Chem. Phys. 95 4343 [21] Boothroyd A I, Keogh W J, Martin P G and Peterson M R 1996 J. Chem. Phys. 104 7139 [22] Mark Wu Y S, Kuppermann A and Anderson J 1999 Phys. Chem. Chem. Phys. 1 929 [23] Aoiz F J, Bañares L and Herrero V J 1998 J. Chem. Soc. 94 2483 [24] Aoiz F J, Bañares L and Herrero V J 2005 Inter. Rev. Phys. Chem. 24 119 [25] Skouteris D, Castillo J F and Manolopoulos D E 2000 Comp. Phys. Comm. 133 128 [26] Althorpe S C 2001 J. Chem. Phys. 114 1601 [27] Kendrick B K 2000 J. Chem. Phys. 112 5679 [28] Chao S D, Harich S A, Dai D X, Wang C C, Yang X and Skodje R T 2002 J. Chem. Phys. 117 8341 [29] Schnieder L, Rahn K S, Wrede E and Welge K H 1997 J. Chem. Phys. 107 6175 [30] Kendrick B K 2003 J. Chem. Phys. 118 10502 [31] Dai D X, Wang C C, Harich S A, Wang X Y, Yang X M, Chao S D and Skodje R T 2003 Science 300 1730 [32] Hochman Kowal S and Persky A 1997 Chem. Phys. 222 29 [33] Zhang P Y and Han K L 2014 J. Phys. Chem. A 118 8929 [34] Wei W, Gao S B, Sun Z P, Song Y Z and Meng Q T 2014 Chin. Phys. B 23 073101 [35] Zhang Y C, Zhang Y B, Zhan L X, Zhang S L, Zhang D H and Zhang Z H J 1998 Chin. Phys. Lett. 15 16 [36] Zhang J, Gao S B, Wu H and Meng Q T 2015 J. Phys. Chem. A 119 8959 [37] Zhang J Y, Xu T, Ge Z W, Zhao J, Gao S B and Meng Q T 2020 Chin. Phys. B 29 063101 [38] Zhang J, Gao S B, Wu H and Meng Q T 2015 Chin. Phys. B 24 083104 [39] Zhang Y 2016 Chin. Phys. B 25 123104 [40] Zhao J, Wu H, Sun H B and Wang L F 2018 Chin. Phys. B 27 023102 [41] Xu T, Zhao J, Wang X L and T M Q 2019 Chin. Phys. B 28 023102 [42] Wu H, Yao C X, He X H and Zhang P Y 2016 J. Chem. Phys. 144 184301 [43] Wu H, Duan Z X, Yin S H and Zhao G J 2016 J. Chem. Phys. 145 124305 [44] Fleck J A, Morris J R and Feit M D 1976 Appl. Phys. 10 129 [45] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|