|
|
The reagent vibrational excitation effect on the stereodynamics of the reaction O(1D)+HBr→OH+Br |
Zhang Ying-Ying (张莹莹)a, Shi Ying (石英)a, Xie Ting-Xian (解廷献)b, Jin Ming-Xing (金明星)a, Hu Zhan (胡湛)a |
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
b Department of Physics, Dalian Jiaotong University, Dalian 116028, China |
|
|
Abstract Calculations on the dynamics of the reaction O(1D)+HBr→OH+Br are performed on the ab initio potential energy surfaces (PESs) of the ground state given by Peterson [Peterson K A J. Chem. Phys. 113 4598 (2000)] using the quasiclassical trajectory (QCT) method. The product distribution of the dihedral angle, P(φr), and that of the angle between k and j', P(θr), are presented in three dimensions. Moreover, we also investigate the reagent vibrational excitation effects on the two polarization-dependent generalized differential cross sections (PDDCS), PDDCS00 and PDDCS20, in the centerof-mass frame. The results indicate that the vector properties are sensitive to the reagent vibrational quantum number.
|
Received: 10 December 2012
Revised: 15 February 2013
Accepted manuscript online:
|
PACS:
|
34.50.Lf
|
(Chemical reactions)
|
|
82.20.Fd
|
(Collision theories; trajectory models)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the Natural Science Fund from Jilin University, China (Grant No. 419080106440), the Chinese National Fusion Project for ITER (Grant No. 2010GB104003), and the National Natural Science Foundation of China (Grant No. 10974069). |
Corresponding Authors:
Shi Ying
E-mail: shi_ying@jlu.edu.cn
|
Cite this article:
Zhang Ying-Ying (张莹莹), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星), Hu Zhan (胡湛) The reagent vibrational excitation effect on the stereodynamics of the reaction O(1D)+HBr→OH+Br 2013 Chin. Phys. B 22 083402
|
[1] |
Yagi K, Williams J, Wang N Y and Cicerone R J 1995 Science 267 1979
|
[2] |
Tie X X and Brasseur G 1996 Geophys. Res. Lett. 23 2505
|
[3] |
Mahmud K, Kim J S and Fontijn A 1990 J. Phys. Chem. 94 2994
|
[4] |
Balucani N, Beneventi L, Casavecchia P, Volpi G G, Kruss E J and Sloan J J 1994 Can. J. Chem. 72 888
|
[5] |
McRae G A and Cohen E A 1990 J. Mol. Spectrosc. 139 369
|
[6] |
Koga Y, Takeo H, Kondo S, Sugie M, Matsumura C, McRae G A and Cohen E A 1989 J. Mol. Spectrosc. 138 467
|
[7] |
Cohen E A, McRae G A, Tan T L, Friedl R R, Johns J W C and Noel M 1995 J. Mol. Spectrosc. 173 55
|
[8] |
Wine P H, Wells J R and Ravishankara A R 1986 J. Chem. Phys. 84 1349
|
[9] |
Cronkhite J M and Wine P H 1998 Int. J. Chem. Kinet. 30 555
|
[10] |
McGrath M P and Rowland F S 1994 J. Phys. Chem. 98 4774
|
[11] |
Peterson K A 2000 J. Chem. Phys. 113 4598
|
[12] |
Tang B Y, Tang Q K, Chen M D, Han K L and Zhang J Z H 2004 J. Chem. Phys. 120 8537
|
[13] |
Wang M L, Han K L, Zhan J P, Wu V W K, He G Z and Lou N Q 1997 Chem. Phys. Lett. 278 307
|
[14] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. 283 463
|
[15] |
Zhu T, Hu G D, Chen J Z, Liu X G and Zhang Q G 2010 Chin. Phys. B 19 083402
|
[16] |
Cai M Q, Zhang L, Tang B Y, Chen M D, Yang G W and Han K L 2000 Chem. Phys. 260 281
|
[17] |
Tang P Y, Li D L, Wu M M and Tang B Y 2011 J. Theor. Comput. Chem. 10 19
|
[18] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[19] |
KoKov S S, Peterson K A and Bowman J M 1998 J. Chem. Phys. 109 2662
|
[20] |
Peterson K A, KoKov S S and Bowman J M 1999 J. Chem. Phys. 111 7446
|
[21] |
Pijkeren D V, Eck J V and Niehaus A 1983 Chem. Phys. Lett. 96 20
|
[22] |
Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
|
[23] |
Sizun M, Song J B and Gislason E A 2002 J. Chem. Phys. 116 2888
|
[24] |
De Miranda M P, Aoiz F J, Brouard M and Saez-Rabanos V 2004 J. Chem. Phys. 121 9830
|
[25] |
De Miranda M P and Clary D C 1997 J. Chem. Phys. 106 4509
|
[26] |
Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
|
[27] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[28] |
Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
|
[29] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 4463
|
[30] |
Han K L, Zhang L, Xu D L, He G Z and Lou N Q 2001 J. Phys. Chem. A 105 2956
|
[31] |
Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
|
[32] |
Liu Y F, Zhang W, Shi D H and Sun J F 2009 Chin. Phys. B 18 4264
|
[33] |
Li H, Zheng B and Meng Q T 2012 Acta Phys. Sin. 61 153401 (in Chinese)
|
[34] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[35] |
Yao L, Zhong H Y, Liu Y L and Xia W W 2009 Chem. Phys. 359 151
|
[36] |
Liu S L and Shi Y 2011 Chem. Phys. Lett. 501 197
|
[37] |
Li H, Zheng B, Yin J Q and Meng Q T 2011 Chin. Phys. B 20 123401
|
[38] |
Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. 113 4192
|
[39] |
Gómez-Carrasco S, González-Sánchez L and Aguado A 2004 Chem. Phys. Lett. 383 25
|
[40] |
Zhao L, Sun P and Liu C Z 2011 Chin. Phys. Lett. 28 083101
|
[41] |
Liu Y F, He X H, Shi D H and Sun J F 2011 Chin. Phys. B 20 078201
|
[42] |
Aldegunde J, Aoiz F J and Gonzalez-Sanchez L 2012 Phys. Chem. Chem. Phys. 14 2911
|
[43] |
Fu Y B, Luo W L, Ruan W, Zhang L and Zhu Z H 2009 Chin. Phys. B 18 167
|
[44] |
Liu S L and Shi Y 2010 Chem. Phys. Lett. 27 123103
|
[45] |
Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
|
[46] |
Hartree W S and Simons J P 1990 J. Chem. Soc. Faraday Trans. 86 17
|
[47] |
Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
|
[48] |
Han K L, Zheng X G, Sun B F and He G Z 1991 Chem. Phys. Lett. 181 47
|
[49] |
Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
|
[50] |
Cheng J and Yue X F 2011 Chin. Phys. Lett. 28 083102
|
[51] |
Zheng Y J and Ge M H 2011 Chin. Phys. B 20 083401
|
[52] |
Zhao J and Luo Y 2011 Chin. Phys. B 20 083402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|