Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 023402    DOI: 10.1088/1674-1056/21/2/023402
GENERAL Prev   Next  

Influence of the reagent vibration on the stereo-dynamics of the reactions D- + H2 and H- + D2

Chen Xiao-Qiong(陈肖琼), Wang Mei-Shan(王美山), Yang Chuan-Lu(杨传路), and Wu Ji-Cheng(吴继成)
School of Physics, Key Laboratory of Atomic and Molecular Physics of Shandong Province, Ludong University, Yantai 264025, China
Abstract  Employing the quasi-classical trajectory method and the potential energy surface of Panda and Sathyamurhy [Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343], the effect of the reagent vibration on vector correlation of the ion-molecule reactions D- + H2 and H- + D2 is studied at a collision energy of 35.7 kcal/mol. Four generalized polarization-dependent differential cross sections (2$\pi$/σ)(dσ00/dωt),(2$\pi$/σ)(dσ20/dωt),(2$\pi$/σ)(dσ22/dωt), and (2$\pi$/σ)(dσ20/dωt) are presented in the centre-of-mass reference frame, separately. At the same time, the effects on the product angular distributions P(θr), P($\phi$r) and P(θr,$\phi$r) of the title reactions are also analysed. The calculated results show that the scattering tendencies of the product HD, the alignment and the orientation of j' sensitively depend on reagent molecule vibration.
Keywords:  quasi-classical trajectory      generalized polarization dependent differential cross sections      stereodynamics      vector correlation  
Received:  18 December 2010      Revised:  05 September 2011      Accepted manuscript online: 
PACS:  34.50.Lf (Chemical reactions)  
  82.20Kh  
  82.20Tr  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074103) and the Discipline Construction Fund of Ludong University, China.
Corresponding Authors:  Wang Mei-Shan,mswang1971@163.com     E-mail:  mswang1971@163.com

Cite this article: 

Chen Xiao-Qiong(陈肖琼), Wang Mei-Shan(王美山), Yang Chuan-Lu(杨传路), and Wu Ji-Cheng(吴继成) % Influence of the reagent vibration on the stereo-dynamics of the reactions D- + H2 and H- + D2 2012 Chin. Phys. B 21 023402

[1] Zhang W Q, Li Y Z, Xu X S and Chen M D 2010 Chem. Phys. 367 115
[2] Zhang W Q, Cong S L, Zhang C H, Xu X S and Chen M D 2009 J. Phys. Chem. A 113 4192
[3] Panda A N, Giri K and Sathyamurthy N J 2005 J. Phys. Chem. A 109 2057
[4] Panda A N and Sathyamurthy N 2005 J. Chem. Phys. 122 054304
[5] Morari C and Jaquet R 2005 J. Phys. Chem. A 109 3396
[6] Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
[7] Panda A N and Sathyamurthy N 2004 J. Chem. Phys. 121 9343
[8] Li W L, Wang M S, Yang C L, Liu W W, Sun C and Ren T Q 2007 Chem. Phys. 337 93
[9] Li W L, Wang M S, Dong Y M and Yang C L 2008 Chem. Phys. 348 97
[10] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[11] Li X H, Wang M S, Ilaria Pino, Yang C L and Wu J C 2010 Phys. Chem. Chem. Phys. 12 7942
[12] Duan L H, Zhang W Q, Cong S L and Chen M D 2009 Mol. Phys. 107 2579
[13] Yang B, Gao H, Han K L and Zhang Z H 2000 J. Chem. Phys. 113 1434
[14] Li W L and Wang M S 2007 Mol. Phys. 105 2329
[15] Li X H, Wang M S, Ilaria Pino, Yang C L and Ma L Z 2009 Phys. Chem. Chem. Phys. 11 10438
[16] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[17] Hu J, Han K L and He G Z 2005 Phys. Rev. Lett. 95 123001
[18] Mahapatra S 2000 Phys. Chem. Chem. Phys. 2 671
[19] Muller H, Zimmer M and Linder F 1996 J. Phys. B 29 4165
[20] Lepp S, Stancil P C and Dalgarno A 2002 J. Phys. B 35 57
[21] Shafer-Ray N E, Orr-Ewing A J and Zare R N 1995 J. Phys. Chem. 99 7591
[22] Yue X F, Cheng J, Li H, Zhang Y Q and Emilia L 2010 Chin. Phys. B 19 043403
[23] Zhu T, Hu G D, Chen J Z, Liu X G and Zhang Q G 2010 Chin. Phys. B 19 083402
[24] Aoiz F J, Brouard M and Enriquez P A 1996 J. Chem. Phys. 105 4964
[25] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. 283 463
[26] Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
[27] Ma J J, Chen M D, Cong S L and Han K L 2006 Chem. Phys. 327 529
[28] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
[29] Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
[30] Chen M D, Han K L and Lou N Q 2002 Chem. Phys. Lett. 357 483
[31] Xu Y, Zhao J, Yue D G, Liu H, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
[32] Han K L, He G Z and Lou N Q 1989 Chin. J. Chem. Phys. 2 323
[1] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[2] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[3] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[4] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[5] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[6] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[7] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[8] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[9] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[10] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[11] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇). Chin. Phys. B, 2015, 24(11): 113402.
[12] Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S(3P) + H2→SH + H
Shan Guang-Ling (单广玲), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Li Yan-Qing (李艳青). Chin. Phys. B, 2014, 23(6): 068201.
[13] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[14] Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction
Wei Qiang (魏强). Chin. Phys. B, 2014, 23(2): 023401.
[15] Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction
Zhang Ying-Ying (张莹莹), Li Shu-Juan (李淑娟), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星). Chin. Phys. B, 2014, 23(12): 123402.
No Suggested Reading articles found!