Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 063101    DOI: 10.1088/1674-1056/ab889c
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics

Jin-Yu Zhang(张金玉)1, Ting Xu(许婷)1, Zhi-Wei Ge(葛志伟)1, Juan Zhao(赵娟)2, Shou-Bao Gao(高守宝)1,3, Qing-Tian Meng(孟庆田)1
1 School of Physics and Electronics, Shandong Normal University, Jinan 250358, China;
2 School of Science, Shandong Jiaotong University, Jinan 250357, China;
3 Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
Abstract  We present a state-to-state dynamical calculation on the reaction S++H2→SH++H based on an accurate X2A" potential surface. Some reaction properties, such as reaction probability, integral cross sections, product distribution, etc., are found to be those with characteristics of an indirect reaction. The oscillating structures appearing in reaction probability versus collision energy are considered to be the consequence of the deep potential well in the reaction. The comparison of the present total integral cross sections with the previous quasi-classical trajectory results shows that the quantum effect is more important at low collision energies. In addition, the quantum number inversion in the rotational distribution of the product is regarded as the result of the heavy-light-light mass combination, which is not effective for the vibrational excitation. For the collision energies considered, the product differential cross sections of the title reaction are mainly concentrated in the forward and backward regions, which suggests that there is a long-life intermediate complex in the reaction process.
Keywords:  state-to-state reaction dynamics      time-dependent wave packet      S++H2      differential and integral cross sections  
Received:  22 March 2020      Revised:  05 April 2020      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  34.50.-s (Scattering of atoms and molecules)  
  82.20.Bc (State selected dynamics and product distribution)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11674198), the Taishan Scholar Project of Shandong Province, China (Grant No. ts201511025), and the Science Fund from the Shandong Provincial Laboratory of Biophysics.
Corresponding Authors:  Ting Xu, Qing-Tian Meng     E-mail:  1666456849@qq.com;qtmeng@sdnu.edu.cn

Cite this article: 

Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田) Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics 2020 Chin. Phys. B 29 063101

[1] Farquhar J, Bao H and Thiemens M H 2000 Science 289 756
[2] Habicht K S, Gade M, Thamdrup B, Berg P and Canfield D E 2002 Science 298 2372
[3] Martínez R, Millán J and González M 2004 J. Chem. Phys. 120 4705
[4] Smith D, Adams N G and Lindinger W 1981 J. Chem. Phys. 75 3365
[5] Stowe G F, Schultz R H, Wight C A and Armentrout P 1990 Int. J. Mass Spectrom. Ion Processes 100 177
[6] Duxbury G, Jungen C, Alijah A, Maier J and Klapstein D 2014 Mol. Phys. 112 3072
[7] Horani M, Leach S and Rostas J 1967 J. Mol. Spectrosc. 23 115
[8] Dixon R, Duxbury G, Horani M and Rostas J 1971 Mol. Phys. 22 977
[9] Duxbury G, Horani M and Rostas J 1972 Proc. R. Soc., 21 November, 1972
[10] Delwiche J and Natalis P 1970 Chem. Phys. Lett. 5 564
[11] Han S, Kang T Y and Kim S K 2010 J. Chem. Phys. 132 124304
[12] Sakai H, Yamabe S, Yamabe T, Fukui K and Kato H 1974 Chem. Phys. Lett. 25 541
[13] Bruna P J, Hirsch G, Perić M, Peyerimhoff S D and Buenker R J 1980 Mol. Phys. 40 521
[14] Lahmar S, Lakhdar Z B, Chambaud G and Rosmus P 1995 J. Mol. Struct.: THEOCHEM 333 29
[15] Takeshita K and Shida N 1996 Chem. Phys. 210 461
[16] Hirst D M 2003 J. Chem. Phys. 118 9175
[17] Li W Z and Huang M B 2005 Chem. Phys. 315 133
[18] Chang H B and Huang M B 2009 Theor. Chem. Acc. 122 189
[19] Zanchet A, Agúndez M, Herrero V J, Aguado A and Roncero O 2003 Astrophys. J. 146 125
[20] Song Y Z, Zhang Y, Gao S B, Meng Q T, Wang C K and Ballester M Y 2018 Mol. Phys. 116 129
[21] Zhang L L, Gao S B, Meng Q T, Pan J and Song Y Z 2018 J. Chem. Phys. 149 154303
[22] Bulut N, Castillo J F, Jambrina P G, Klos J, Roncero O, Aoiz F J and Banares L 2015 J. Phys. Chem. A 119 11951
[23] Zhang P Y and Han K L 2013 J. Phys. Chem. A 117 8512
[24] Zhang P Y and Han K L 2014 J. Phys. Chem. A 118 8929
[25] Zhang P Y and Han K L 2015 Int. J. Quantum Chem. 115 738
[26] Zhang J, Gao S B, Wu H and Meng Q T 2015 J. Phys. Chem. A 119 8959
[27] Wu H, Yao C X, He X H and Zhang P Y 2016 J. Chem. Phys. 144 184301
[28] Zhang J, Gao S B, Wu H and Meng Q T 2015 Chin. Phys. B 24 083104
[29] Xu T, Zhao J, Wang X L and Meng Q T 2019 Chin. Phys. B 28 023102
[30] Xu T, Wu H, Zhang L L, Wang X L, Zhao J and Meng Q T 2019 Mol. Phys. 117 311
[31] Xu T, Zhang J, Zhao J, Song Y and Meng Q 2019 Europhys. Lett. 126 53001
[32] Zhao J, Wu H, Sun H B and Wang L F 2018 Chin. Phys. B 27 023102
[33] Li Y Q, Zhang P Y and Han K L 2015 J. Chem. Phys. 142 124302
[34] Ma H Y, Guo Q and Li Y Q 2019 Spectrochim. Acta Part. A 219 267
[35] Zhang John Z H 1998 Theory and application of quantum molecular dynamics (Singapore: World Scientific)
[36] Duan Z X, Li W L, Xu W W and Lv S J 2013 J. Chem. Phys. 139 094307
[37] Zhao J, Xu T, Zhang L L and Wang L F 2020 Chin. Phys. B 29 023105
[38] Balakrishnan N 2012 J. Chem. Sci. 124 311
[1] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[2] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[3] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[4] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[5] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[6] The effect of field modulation on the vibrational population of the photoassociated NaK and its dynamics
Yu Wang(王玉), Da-Guang Yue(岳大光), Xu-Cong Zhou(周旭聪), Ya-Hui Guo(郭雅慧), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2017, 26(4): 043202.
[7] State-to-state quantum dynamics of N(2D)+HD (v=0, j=0) reaction
Yong Zhang(张勇). Chin. Phys. B, 2016, 25(12): 123104.
[8] State-to-state quantum dynamics of the N(4S)+H2 (X1Σ+)→NH(X3-)+H(2S) reaction and its reaction mechanism analysis
Zhang Jing (张静), Gao Shou-Bao (高守宝), Wu Hui (吴慧), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2015, 24(8): 083104.
[9] Time-dependent approach to the double-channel dissociation of the NaCs molecule induced by pulsed lasers
Zhang Cai-Xia (张彩霞), Niu Yu-Quan (牛余全), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2014, 23(10): 103301.
[10] Manifestation of external field effect in time-resolved photo-dissociation dynamics of LiF
Meng Qing-Tian (孟庆田), A. J. C. Varandas. Chin. Phys. B, 2013, 22(7): 073303.
[11] Theoretical simulation of the photoassociation process for NaCs
Zhang Chang-Zhe (张常哲), Zheng Bin (郑斌), Wang Jun (王军), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2013, 22(2): 023401.
[12] Study on wave packet dynamics of E1g+ state of Li2 with femtosecond-resolved photoelectron spectra
Liu Yu-Fang(刘玉芳), Liu Rui-Qiong(刘瑞琼), and Ding Jun-Xia(丁俊霞). Chin. Phys. B, 2010, 19(3): 033301.
[13] Theoretical study of the influence of intense femtosecond laser field on the evolution of the wave packet and the population of NaRb molecule
Ma Ning(马宁), Wang Mei-Shan(王美山), Yang Chuan-Lu(杨传路), Ma Xiao-Guang(马晓光), and Wang De-Hua(王德华). Chin. Phys. B, 2010, 19(2): 023301.
[14] Influence of laser fields on the vibrational population of molecules and its wave-packet dynamical investigation
Wang Jun(王军), Liu Fang(刘芳), Yue Da-Guang(岳大光), Zhao Juan(赵娟), Xu Yan(许燕), Meng Qing-Tian(孟庆田), and Liu Wing-Ki. Chin. Phys. B, 2010, 19(12): 123301.
[15] Control of reaction channels of CsI molecule by ultra-short laser pulse
Xiong De-Lin(熊德林),Wang Mei-Shan(王美山), Yang Chuan-Lu(杨传路), Tong Xiao-Fei(童小菲), and Ma Ning(马宁). Chin. Phys. B, 2010, 19(10): 103303.
No Suggested Reading articles found!