|
|
Theoretical study of stereodynamics for reaction O(3P)+HCl |
Zhu Tong(朱通), Hu Guo-Dong(扈国栋), Chen Jian-Zhong(陈建中), Liu Xin-Guo(刘新国), and Zhang Qing-Gang(张庆刚)† |
College of Physics and Electronics, Shandong Normal University, Jinan 250014, China |
|
|
Abstract The vector correlation between products and reagents for reaction O( 3P)+HCl→OH+Cl is studied using a quasi-classical trajectory (QCT) method on the benchmark potential energy surface of the ground 3A'' state [Ramachandran and Peterson, J. Chem. Phys. 119 (2003) 9550]. The generalised differential cross section $(2\pi/\sigma)({\rm d}\sigma_{00}/{\rm d}\omega_t)$ is presented in the centre of mass frame. The distribution of dihedral angles, $P(\phi_r)$, and the distribution of angles between k and j', $P({\theta_r})$, are calculated. The influence of the collision energy and the influence of the reagent rotation and vibration on the product polarization are studied in the present work. The calculated results indicate that the rotational polarization of the product molecule is almost independent of collision energy but sensitive to the reagent rotation and vibration.
|
Received: 24 June 2009
Revised: 23 November 2009
Accepted manuscript online:
|
PACS:
|
82.30.Cf
|
(Atom and radical reactions; chain reactions; molecule-molecule reactions)
|
|
82.20.Fd
|
(Collision theories; trajectory models)
|
|
82.20.Hf
|
(Product distribution)
|
|
82.20.Kh
|
(Potential energy surfaces for chemical reactions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10474060 and 10504017), and the Natural Science Foundation of Shandong Province, China (Grant No. 2007A05). |
Cite this article:
Zhu Tong(朱通), Hu Guo-Dong(扈国栋), Chen Jian-Zhong(陈建中), Liu Xin-Guo(刘新国), and Zhang Qing-Gang(张庆刚) Theoretical study of stereodynamics for reaction O(3P)+HCl 2010 Chin. Phys. B 19 083402
|
[1] |
Orr-Ewing A J and Zare R N 1994 Ann. Rev. Phys. Chem. 45 315
|
[2] |
Liu X G, Zhang Q G, Zhang Y C, Wang M L and Zhang J Z H 2004 Chin. Phys. 13 1013
|
[3] |
Sun G H, Yang X D, Zhu J and Wang C X 2002 Chin.Phys. 11 910
|
[4] |
Wang F H, Yang C L, Zhu Z H and Jing F Q 2005 Chin. Phys. 14 317
|
[5] |
Hsu D S Y and Herschbach D R 1973 Faraday Discuss. Chem. Soc. 55 166
|
[6] |
Li R J, Li F, Han K L, Lu R C, He G Z and Lou N Q 1993 Proc. Int. Conf. Laser 92 456
|
[7] |
Li R J, Li F, Han K L, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
|
[8] |
Hsu D S Y, Weinstein N D and Herschbach D R 1975 Mol. Phys. 29 257
|
[9] |
Ma X G, Yang C L, Gong Y B and Wang M S 2009 Chin. Phys. B 18 5296
|
[10] |
Hennessy R J and Simons J P 1982 Mol. Phys. 43 181
|
[11] |
Menedez M, Garay M, Verdasco E Castano J and Gonzalez-Urena J A 1993 Phys. Chem. 97 5936
|
[12] |
Costen M L, Hancock G and Orr-Ewing A J 1991 Faraday Discuss. Chem. Soc. 91 79
|
[13] |
Jonah C D, Zare R N and Ottinger C 1992 J. Chem. Phys. 97 952
|
[14] |
van der Zande W, Zhang R, McKendrick K G, Zare R N and Valentini J J 1991 J. Phys. Chem. 95 8205
|
[15] |
Han K L, He G Z and Lou N Q 1993 Chin. Chem. Lett. 4 517
|
[16] |
Polanyi J C and Wong W H 1969 J. Chem. Phys. 15 1439
|
[17] |
Hijazi N H and Polanyi J C 1975 Chem. Phys. 11 1
|
[18] |
Hijazi N H and Polanyi J C 1975 J. Chem. Phys. 63 2249
|
[19] |
Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699
|
[20] |
Wang M L, Han K L and He G Z 1998 J. Phys. Chem. A 102 10204
|
[21] |
Wang M L, Han K L and He G Z 1998 J. Chem. Phys. 109 5446
|
[22] |
Xu W W, Liu X G, Luan S X, Sun S S and Zhang Q G 2009 Chin. Phys. B 18 339
|
[23] |
Kong H, Liang J J, Liu X G, Xu W W and Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese)
|
[24] |
Chen M D, Han K L and Lou N Q 2003 J. Chem. Phys. 118 4463
|
[25] |
Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
|
[26] |
Rakestraw D J, McKendrick K G and Zare R N 1987 J. Chem. Phys. 87 7341
|
[27] |
Zhang R, van der Zande W J, Bronikowski M J and Zare R N 1991 J. Chem. Phys. 94 2704
|
[28] |
Ramachandran B, Senekowitsch J and Wyatt R E 1997 Chem. Phys. Lett. 270 387
|
[29] |
Ramachandran B 2000 J. Chem. Phys. 112 3680
|
[30] |
Xie T, Bowman J, Duff J W, Braunstein M and Ramachandran B 2005 J. Chem. Phys. 122 014301
|
[31] |
Barguen P, Alvarin J M and Gonz'alez-Lezana T 2008 Eur. Phys. J. D 47 181
|
[32] |
Koizumi H, Schatz G C and Gordon M S 1991 J. Chem. Phys. 95 6241
|
[33] |
Ramachandran B, Schrader III E A, Senekowitsch J and Wyatt R E 1999 J. Chem. Phys. 111 3862
|
[34] |
Ramachandran B and Peterson K A 2003 J. Chem. Phys. 119 9550
|
[35] |
Brouard M, Lambert H M, Rayner S P and Simons J P 1996 Mol. Phys. 89 403
|
[36] |
Guo X M, Han K L, Liu J Y, Wan Y, Wang S F and Xia A D 2009 Chin. Phys. B 18 142
|
[37] |
Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
|
[38] |
Han K L, He G Z and Lou N Q 1989 Chin. J. Chem. Phys. 2 323 (in Chinese)
|
[39] |
Zhang X and Han K L 2006 Int. Quantum Chem. 106 1815
|
[40] |
Duan Z X, Qi Y and Yang C L 2008 Mol. Phys. 106 2725
|
[41] |
Fan K M, Liu Y, Liu S H, Ren W Y and Wang A S 2007 Chin. Phys. 16 1641
|
[42] |
Orr-Ewing A J, Simpson W R, Rakitzis T P, Kandel S A and Zare R N 1997 J. Chem. Phys. 106 5961
|
[43] |
Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 243
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|