CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method |
Jun-Nan Sun(孙俊男)1,2, Bin-Bin Ruan(阮彬彬)2,3,†, Meng-Hu Zhou(周孟虎)2,3, Yin Chen(陈银)2, Qing-Song Yang(杨清松)2,4, Lei Shan(单磊)1, Ming-Wei Ma(马明伟)2,3, Gen-Fu Chen(陈根富)2,3,4, and Zhi-An Ren(任治安)2,3,4,‡ |
1 Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 2 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China; 4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract We report the microwave synthesis and the doping effect of Mo3-xRexAl2C (0 ≤ x ≤ 0.3) superconductor. Re doping into Mo3Al2C results in a regular shrinkage of the lattice, marked by the linear decrease of lattice parameter a from 6.868(1) Å (for Mo3Al2C) to 6.846(2) Å (for Mo2.7Re0.3Al2C). Upon Re doping, Tc of Mo3-xRexAl2C first increases and then decreases, with the maximum Tc = 9.14 K at the optimal doping level of x = 0.09. Our report provides a convenient method to synthesize Mo3-xRexAl2C within minutes, and also marks the first Re doping study with enhanced superconductivity on the non-centrosymmetric superconductor Mo3Al2C.
|
Received: 05 March 2021
Revised: 23 March 2021
Accepted manuscript online: 26 April 2021
|
PACS:
|
74.25.-q
|
(Properties of superconductors)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
74.70.Wz
|
(Carbon-based superconductors)
|
|
81.20.-n
|
(Methods of materials synthesis and materials processing)
|
|
Fund: Project supported by the National Key Research and Development of China (Grant Nos. 2018YFA0704200 and 2016YFA0300301), the National Natural Science Foundation of China (Grant Nos. 12074414 and 11774402), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000). |
Corresponding Authors:
Bin-Bin Ruan, Zhi-An Ren
E-mail: bbruan@mail.ustc.edu.cn;renzhian@iphy.ac.cn
|
Cite this article:
Jun-Nan Sun(孙俊男), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Yin Chen(陈银), Qing-Song Yang(杨清松), Lei Shan(单磊), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安) Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method 2021 Chin. Phys. B 30 077401
|
[1] Smidman M, Salamon M B, Yuan H Q and Agterberg D F 2017 Rep. Prog. Phys. 80 036501 [2] Yoshida H, Okabe H, Matsushita Y, Isobe M and Takayama-Muromachi E 2017 Phys. Rev. B 95 184514 [3] Kneidinger F, Bauer E, Zeiringer I, Rogl P, Blaas-Schenner C, Reith D and Podloucky R 2015 Physica C 514 388 [4] Gor'kov L P and Rashba E I 2001 Phys. Rev. Lett. 87 037004 [5] Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Noel H, Sigrist M and Rogl P 2004 Phys. Rev. Lett. 92 027003 [6] Kimura N, Ito K, Saitoh K, Umeda Y, Aoki H and Terashima T 2005 Phys. Rev. Lett. 95 247004 [7] Sugitani I, Okuda Y, Shishido H, Yamada T, Thamizhavel A, Yamamoto E, D. Matsuda T, Haga Y, Takeuchi T, Settai R and Ōnuki Y 2006 J. Phys. Soc. Jpn. 75 043703 [8] Akazawa T, Hidaka H, Fujiwara T, Kobayashi T C, Yamamoto E, Haga Y, Settai R and Nuki Y 2004 J. Phys.: Condens. Matter 16 L29 [9] Mu Q G, Ruan B B, Zhao K, Pan B J, Liu T, Shan L, Chen G F and Ren Z A 2018 Sci. Bull. 63 952 [10] Zhao K, Mu Q G, Ruan B B, Zhou M H, Yang Q S, Liu T, Pan B J, Zhang S, Chen G F and Ren Z A 2020 Chin. Phys. Lett. 37 097401 [11] Zhao K, Mu Q G, Ruan B B, Liu T, Pan B J, Zhou M H, Zhang S, Chen G F and Ren Z A 2020 APL Mater. 8 031103 [12] Johnston J, Toth L, Kennedy K and Parker E R 1964 Solid State Commun. 2 123 [13] Niimura H, Kawashima K, Inoue K, Yoshikawa M and Akimitsu J 2014 J. Phys. Soc. Jpn. 83 044702 [14] Wei W, Zhao G. J, Kim D. R, Jin C, Zhang J. L, Ling L, Zhang L, Du H, Chen T. Y, Zang J, Tian M, Chien C L and Zhang Y 2016 Phys. Rev. B 94 104503 [15] Salamakha L P, Sologub O, Stöger B, Michor H, Bauer E and Rogl P F 2015 J. Solid State Chem. 229 303 [16] Ying T P, Qi Y P and Hosono H 2019 Phys. Rev. B 100 094522 [17] Iyo A, Hase I, Fujihisa H, Gotoh Y, Takeshita N, Ishida S, Ninomiya H, Yoshida Y, Eisaki H and Kawashima K 2019 Phys. Rev. Mater. 3 124802 [18] Bauer E, Rogl G, Chen X Q, Khan R T, Michor H, Hilscher G, Royanian E, Kumagai K, Li D. Z, Li Y Y, Podloucky R and Rogl P 2010 Phys. Rev. B 82 064511 [19] Togano K, Badica P, Nakamori Y, Orimo S, Takeya H and Hirata K 2004 Phys. Rev. Lett. 93 247004 [20] Badica P, Kondo T and Togano K 2005 J. Phys. Soc. Jpn. 74 1014 [21] Takeya H, Hirata K, Yamaura K, Togano K, El Massalami M, Rapp R, Chaves F A and Ouladdiaf B 2005 Phys. Rev. B 72 104506 [22] Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M and Salamon M B 2006 Phys. Rev. Lett. 97 017006 [23] Nishiyama M, Inada Y and Zheng G Q 2007 Phys. Rev. Lett. 98 047002 [24] Badica P, Salem-Sugui S, Alvarenga A D and Jakob G 2010 Supercond. Sci. Technol. 23 105018 [25] Peets D C, Eguchi G, Kriener M, Harada S, Shamsuzzaman S K M, Inada Y, Zheng G Q and Maeno Y 2012 J. Phys.: Conf. Ser. 400 022096 [26] Sekine C, Sai U, Hayashi J, Kawamura Y and Bauer E 2017 J. Phys.: Conf. Ser. 950 042028 [27] Karki A B, Xiong Y M, Vekhter I, Browne D, Adams P W, Young D P, Thomas K R, Chan J Y, Kim H and Prozorov R 2010 Phys. Rev. B 82 064512 [28] Koyama T, Maeda Y, Yamazaki T, Ueda K I, Mito T, Kohara T, Waki T, Tabata Y, Tsunemi H, Ito M and Nakamura H 2013 J. Phys. Soc. Jpn. 82 073709 [29] Ramachandran B, Jhiang J Y, Kuo Y K, Kuo C N and Lue C S 2016 Supercond. Sci. Technol. 29 035003 [30] Pan B J, Zhao K, Liu T, Ruan B B, Zhang S, Chen G F and Ren Z A 2019 Chin. Phys. Lett. 36 017401 [31] Murgia F, Antitomaso P, Stievano L, Monconduit L and Berthelot R 2016 J. Solid State Chem. 242 151 [32] Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653 [33] Tarutani Y and Kudo M 1977 J. Less-Common Met. 55 221 [34] Athanasiou N S 1997 Mod. Phys. Lett. B 11 939 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|