Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077401    DOI: 10.1088/1674-1056/abfb5a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method

Jun-Nan Sun(孙俊男)1,2, Bin-Bin Ruan(阮彬彬)2,3,†, Meng-Hu Zhou(周孟虎)2,3, Yin Chen(陈银)2, Qing-Song Yang(杨清松)2,4, Lei Shan(单磊)1, Ming-Wei Ma(马明伟)2,3, Gen-Fu Chen(陈根富)2,3,4, and Zhi-An Ren(任治安)2,3,4,‡
1 Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China;
2 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report the microwave synthesis and the doping effect of Mo3-xRexAl2C (0 ≤ x ≤ 0.3) superconductor. Re doping into Mo3Al2C results in a regular shrinkage of the lattice, marked by the linear decrease of lattice parameter a from 6.868(1) Å (for Mo3Al2C) to 6.846(2) Å (for Mo2.7Re0.3Al2C). Upon Re doping, Tc of Mo3-xRexAl2C first increases and then decreases, with the maximum Tc = 9.14 K at the optimal doping level of x = 0.09. Our report provides a convenient method to synthesize Mo3-xRexAl2C within minutes, and also marks the first Re doping study with enhanced superconductivity on the non-centrosymmetric superconductor Mo3Al2C.
Keywords:  Mo3-xRexAl2C      superconductivity      β-Mn structure      microwave synthesis  
Received:  05 March 2021      Revised:  23 March 2021      Accepted manuscript online:  26 April 2021
PACS:  74.25.-q (Properties of superconductors)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
  74.70.Wz (Carbon-based superconductors)  
  81.20.-n (Methods of materials synthesis and materials processing)  
Fund: Project supported by the National Key Research and Development of China (Grant Nos. 2018YFA0704200 and 2016YFA0300301), the National Natural Science Foundation of China (Grant Nos. 12074414 and 11774402), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB25000000).
Corresponding Authors:  Bin-Bin Ruan, Zhi-An Ren     E-mail:  bbruan@mail.ustc.edu.cn;renzhian@iphy.ac.cn

Cite this article: 

Jun-Nan Sun(孙俊男), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Yin Chen(陈银), Qing-Song Yang(杨清松), Lei Shan(单磊), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安) Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method 2021 Chin. Phys. B 30 077401

[1] Smidman M, Salamon M B, Yuan H Q and Agterberg D F 2017 Rep. Prog. Phys. 80 036501
[2] Yoshida H, Okabe H, Matsushita Y, Isobe M and Takayama-Muromachi E 2017 Phys. Rev. B 95 184514
[3] Kneidinger F, Bauer E, Zeiringer I, Rogl P, Blaas-Schenner C, Reith D and Podloucky R 2015 Physica C 514 388
[4] Gor'kov L P and Rashba E I 2001 Phys. Rev. Lett. 87 037004
[5] Bauer E, Hilscher G, Michor H, Paul C, Scheidt E W, Gribanov A, Seropegin Y, Noel H, Sigrist M and Rogl P 2004 Phys. Rev. Lett. 92 027003
[6] Kimura N, Ito K, Saitoh K, Umeda Y, Aoki H and Terashima T 2005 Phys. Rev. Lett. 95 247004
[7] Sugitani I, Okuda Y, Shishido H, Yamada T, Thamizhavel A, Yamamoto E, D. Matsuda T, Haga Y, Takeuchi T, Settai R and Ōnuki Y 2006 J. Phys. Soc. Jpn. 75 043703
[8] Akazawa T, Hidaka H, Fujiwara T, Kobayashi T C, Yamamoto E, Haga Y, Settai R and Nuki Y 2004 J. Phys.: Condens. Matter 16 L29
[9] Mu Q G, Ruan B B, Zhao K, Pan B J, Liu T, Shan L, Chen G F and Ren Z A 2018 Sci. Bull. 63 952
[10] Zhao K, Mu Q G, Ruan B B, Zhou M H, Yang Q S, Liu T, Pan B J, Zhang S, Chen G F and Ren Z A 2020 Chin. Phys. Lett. 37 097401
[11] Zhao K, Mu Q G, Ruan B B, Liu T, Pan B J, Zhou M H, Zhang S, Chen G F and Ren Z A 2020 APL Mater. 8 031103
[12] Johnston J, Toth L, Kennedy K and Parker E R 1964 Solid State Commun. 2 123
[13] Niimura H, Kawashima K, Inoue K, Yoshikawa M and Akimitsu J 2014 J. Phys. Soc. Jpn. 83 044702
[14] Wei W, Zhao G. J, Kim D. R, Jin C, Zhang J. L, Ling L, Zhang L, Du H, Chen T. Y, Zang J, Tian M, Chien C L and Zhang Y 2016 Phys. Rev. B 94 104503
[15] Salamakha L P, Sologub O, Stöger B, Michor H, Bauer E and Rogl P F 2015 J. Solid State Chem. 229 303
[16] Ying T P, Qi Y P and Hosono H 2019 Phys. Rev. B 100 094522
[17] Iyo A, Hase I, Fujihisa H, Gotoh Y, Takeshita N, Ishida S, Ninomiya H, Yoshida Y, Eisaki H and Kawashima K 2019 Phys. Rev. Mater. 3 124802
[18] Bauer E, Rogl G, Chen X Q, Khan R T, Michor H, Hilscher G, Royanian E, Kumagai K, Li D. Z, Li Y Y, Podloucky R and Rogl P 2010 Phys. Rev. B 82 064511
[19] Togano K, Badica P, Nakamori Y, Orimo S, Takeya H and Hirata K 2004 Phys. Rev. Lett. 93 247004
[20] Badica P, Kondo T and Togano K 2005 J. Phys. Soc. Jpn. 74 1014
[21] Takeya H, Hirata K, Yamaura K, Togano K, El Massalami M, Rapp R, Chaves F A and Ouladdiaf B 2005 Phys. Rev. B 72 104506
[22] Yuan H Q, Agterberg D F, Hayashi N, Badica P, Vandervelde D, Togano K, Sigrist M and Salamon M B 2006 Phys. Rev. Lett. 97 017006
[23] Nishiyama M, Inada Y and Zheng G Q 2007 Phys. Rev. Lett. 98 047002
[24] Badica P, Salem-Sugui S, Alvarenga A D and Jakob G 2010 Supercond. Sci. Technol. 23 105018
[25] Peets D C, Eguchi G, Kriener M, Harada S, Shamsuzzaman S K M, Inada Y, Zheng G Q and Maeno Y 2012 J. Phys.: Conf. Ser. 400 022096
[26] Sekine C, Sai U, Hayashi J, Kawamura Y and Bauer E 2017 J. Phys.: Conf. Ser. 950 042028
[27] Karki A B, Xiong Y M, Vekhter I, Browne D, Adams P W, Young D P, Thomas K R, Chan J Y, Kim H and Prozorov R 2010 Phys. Rev. B 82 064512
[28] Koyama T, Maeda Y, Yamazaki T, Ueda K I, Mito T, Kohara T, Waki T, Tabata Y, Tsunemi H, Ito M and Nakamura H 2013 J. Phys. Soc. Jpn. 82 073709
[29] Ramachandran B, Jhiang J Y, Kuo Y K, Kuo C N and Lue C S 2016 Supercond. Sci. Technol. 29 035003
[30] Pan B J, Zhao K, Liu T, Ruan B B, Zhang S, Chen G F and Ren Z A 2019 Chin. Phys. Lett. 36 017401
[31] Murgia F, Antitomaso P, Stievano L, Monconduit L and Berthelot R 2016 J. Solid State Chem. 242 151
[32] Momma K and Izumi F 2008 J. Appl. Crystallogr. 41 653
[33] Tarutani Y and Kudo M 1977 J. Less-Common Met. 55 221
[34] Athanasiou N S 1997 Mod. Phys. Lett. B 11 939
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[6] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[7] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[8] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[9] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[10] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[11] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[12] Synthesis and properties of La1-xSrxNiO3 and La1-xSrxNiO2
Mengwu Huo(霍梦五), Zengjia Liu(刘增家), Hualei Sun(孙华蕾), Lisi Li(李历斯), Hui Lui(刘晖), Chaoxin Huang(黄潮欣), Feixiang Liang(梁飞翔), Bing Shen(沈冰), and Meng Wang(王猛). Chin. Phys. B, 2022, 31(10): 107401.
[13] Recent advances in quasi-2D superconductors via organic molecule intercalation
Mengzhu Shi(石孟竹), Baolei Kang(康宝蕾), Tao Wu(吴涛), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(10): 107403.
[14] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
[15] Superconductivity in octagraphene
Jun Li(李军) and Dao-Xin Yao(姚道新). Chin. Phys. B, 2022, 31(1): 017403.
No Suggested Reading articles found!