Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 064216    DOI: 10.1088/1674-1056/abcfa0
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Parameter accuracy analysis of weak-value amplification process in the presence of noise

Jiangdong Qiu(邱疆冬)1, Zhaoxue Li(李兆雪)1, Linguo Xie(谢林果)2, Lan Luo(罗兰)1, Yu He(何宇)1, Changliang Ren(任昌亮)3,†, Zhiyou Zhang(张志友)1,‡, and Jinglei Du(杜惊雷)1
1 College of Physics, Sichuan University, Chengdu 610064, China;
2 Key Laboratory of Photonic and Optical Detection in Civil Aviation and Atmospheric Lidar Institute, Civil Aviation Flight University of China, Guanghan 618300, China;
3 Center for Nanofabrication and System Integration, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Abstract  We theoretically introduce the statistical uncertainty of photon number and phase error to discuss the precision of parameters to be measured based on weak measurements. When the photon counting scheme is used, we discuss the relative accuracy of the system in the presence of phase error by using the orthogonal and nonorthogonal pre- and post-selected states, respectively. When using the measurement scheme of pointer shift, we discuss the measurement accuracy in the presence of phase error, pointer resolution, and statistical uncertainty. These results give a guide way to get the smallest relative precision and deepen our understanding about weak measurement.
Keywords:  weak measurement      quantum measurement      accuracy analysis  
Received:  03 November 2020      Revised:  25 November 2020      Accepted manuscript online:  02 December 2020
PACS:  42.50.Tx (Optical angular momentum and its quantum aspects)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Xa (Optical tests of quantum theory)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0305200), the National Natural Science Foundation of China (Grant Nos. 11674234 and 11605205), the Natural Science Foundation of Chongqing (Grant Nos. cstc2015jcyjA00021 and cstc2018jcyjAX0656), the Innovation Project of Sichuan University (Grant No. 2018SCUH0021), the Youth Innovation Promotion Association Program of the Chinese Academy of Sciences (CAS) (Grant No. No. 2015317), the Entrepreneurship and Innovation Support Program for Chongqing Overseas Returnees (Grant Nos. cx2017134 and cx2018040), the Fund of CAS Key Laboratory of Microscale Magnetic Resonance, and the Fund of CAS Key Laboratory of Quantum Information.
Corresponding Authors:  Changliang Ren, Zhiyou Zhang     E-mail:  renchangliang@cigit.ac.cn;zhangzhiyou@scu.edu.cn

Cite this article: 

Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷) Parameter accuracy analysis of weak-value amplification process in the presence of noise 2021 Chin. Phys. B 30 064216

[1] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[2] Hosten O and Kwiat P 2008 Science 319 787
[3] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
[4] Jayaswal G, Mistura G and M Merano 2014 Opt. Lett. 39 6257
[5] Magaña-Loaiza O S, Mirhosseini M, Rodenburg B and Boyd R W 2014 Phys. Rev. Lett. 112 200401
[6] Xu X, Kedem Y, Sun K, Vaidman L, Li C F and Guo G C 2013 Phys. Rev. Lett. 111 033604
[7] Shomroni I, Bechler O, Rosenblum S and Dayan B 2013 Phys. Rev. Lett. 111 023604
[8] Hallaji M, Feizpour A, Dmochowski G, Sinclair J and Steinberg A M 2017 Nat. Phys. 13 540
[9] Singh A K, Ray S K, Chandel S, Pal S, Gupta A, Mitra P and Ghosh N 2018 Phys. Rev. A 97 053801
[10] Brunner N, Acín A, Collins D, Gisin N and Scarani V 2003 Phys. Rev. Lett. 91 180402
[11] Viza G I, Martínez-Rincón J, Howland G A, Frostig H, Shomroni I, Dayan B and Howell J C 2013 Opt. Lett. 38 2949
[12] Egan P and Stone J A 2012 Opt. Lett. 37 4991
[13] Li H, Huang J, Yu Y, Li Y, Fang C and Zenga G 2018 Appl. Phys. Lett. 112, 231901
[14] Liu W, MartínezRincón J, Viza G I and Howell J C 2017 Opt. Lett. 42 903
[15] Harris J, Boyd R W and Lundeen J S 2017 Phys. Rev. Lett. 118 070802
[16] Sinclair J, Hallaji M, Steinberg A M, Tollaksen J and Jordan A N 2017 Phys. Rev. A 96 052128
[17] Pang S, Alonso J R G, Brun T A and Jordan A N 2016 Phys. Rev. A 94 012329
[18] Jordan A N, Martínez-Rincón J and Howell J C 2014 Phys. Rev. X 4 011031
[19] Viza G I, Martínez-Rincón J, Alves G B, Jordan A N and Howell J C 2015 Phys. Rev. A 92 032127
[20] Brunner N and Simon C 2010 Phys. Rev. Lett. 105 010405
[21] Combes J, Ferrie C, Jiang Z and Caves C M 2014 Phys. Rev. A 89 052117
[22] Tanaka S and Yamamoto N 2013 Phys. Rev. A 88 042116
[23] Zhang L, Datta A and Walmsley I A 2015 Phys. Rev. Lett. 114 210801
[24] Ferrie C and Combes J 2014 Phys. Rev. Lett. 112 040406
[25] Knee G C and Gauger E M 2014 Phys. Rev. X 4 011032
[26] Alves G B, EscherB M, de Matos Filho R L, Zagury N and Davidovich L 2015 Phys. Rev. A 91 062107
[27] Bié Alves G, Pimente A, Hor-Meyll M, Walborn S P, Davidovich L and de Matos Filho R L 2017 Phys. Rev. A 95 012104
[28] Kedem Y 2012 Phys. Rev. A 85 060102
[29] Pang S, Dressel J and Brun T A 2014 Phys. Rev. Lett. 113 030401
[30] Pang S and Brun T A 2015 Phys. Rev. A 92 012120
[31] Lyons K, Pang S, Kwiat P G and Jordan A N 2016 Phys. Rev. A 93 043841
[32] Li L, Li Y, Zhang Y, Yu S, Lu C, Liu N, Zhang J and Pan J 2018 Phys. Rev. A 97 033851
[33] Pang S and Brun T A 2015 Phys. Rev. Lett. 115 120401
[34] Dressel J, Lyons K, Jordan A N, Graham T M and Kwiat P G 2013 Phys. Rev. A 88 023821
[35] Lyons K, Dressel J, Jordan A N, Howell J C and Kwiat P G 2015 Phys. Rev. Lett. 114 170801
[36] Wang Y T, Tang J S, Hu G, et al. 2016 Phys. Rev. Lett. 117 230801
[37] Strübi G and Bruder C 2013 Phys. Rev. Lett. 110 083605
[38] Fang C, Huang J, Yu Y, Li Q and Zeng G 2016 J. Phys. B: At. Mol. Opt. Phys. 49 175501
[39] Martínez-Rincón J, Liu W, Viza G I and J Howell C 2016 Phys. Rev. Lett. 116 100803
[40] Chen G, Zhang L J, Zhang W H, et al. 2018 Phys. Rev. Lett. 121 060506
[41] Bertúlio de Lima Bernardo 2014 J. Opt. Soc. Am. B 31 1494
[42] Starling D, Dixon P, Williams N, Jordan A N and Howell J C 2010 Phys. Rev. A 82 011802(R)
[43] Knee G C and Munro W J 2015 Phys. Rev. A 92 012130
[44] Huang J Z, Chen F and Zeng G H 2018 Phys. Rev. A 97 063853
[45] Wang B, Li Y, Pan M, Ren J, Xiao Y, Yang H and Gong Q 2014 Opt. Lett. 39 3425
[46] Qiu X D, Xie L G, Liu X, Luo L, Li Z X, Zhang Z Y and Du J L 2017 Appl. Phys. Lett. 110 071105
[47] Lundeen J S, Sutherland B, Patel A, Stewart C and Bamber C 2011 Nature 474 188
[48] Mirhosseini M, Maganña-Loaiza O S, Rafsanjani S and Boyd R W 2014 Phys. Rev. Lett. 113 090402
[49] Vallone G and Dequal D 2016 Phys. Rev. Lett. 116 040502
[50] Kofman A G, Ashhab S and Nori F 2012 Phys. Rep. 520 43
[51] Nakamura K, Nishizawa A and Fujimoto M 2012 Phys. Rev. A 85 012113
[52] Wu S and Li Y 2011 Phys. Rev. A 83 052106
[53] Pang S, Wu S and Chen Z 2012 Phys. Rev. A 86 022112
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[3] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[4] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[5] Multilevel atomic Ramsey interferometry for precise parameter estimations
X N Feng(冯夏宁) and L F Wei(韦联福). Chin. Phys. B, 2021, 30(12): 120601.
[6] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[7] Double-dot interferometer for quantum measurement of Majorana qubits and stabilizers
Kai Zhou(周凯), Cheng Zhang(张程), Lupei Qin(秦陆培), and Xin-Qi Li(李新奇). Chin. Phys. B, 2021, 30(1): 010301.
[8] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[9] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[10] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[11] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[12] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[13] Demonstration of quantum anti-Zeno effect with a single trapped ion
Man-Chao Zhang(张满超), Wei Wu(吴伟), Lin-Ze He(何林泽), Yi Xie(谢艺), Chun-Wang Wu(吴春旺), Quan Li(黎全), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(9): 090305.
[14] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[15] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
No Suggested Reading articles found!