Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120601    DOI: 10.1088/1674-1056/ac0527
GENERAL Prev   Next  

Multilevel atomic Ramsey interferometry for precise parameter estimations

X N Feng(冯夏宁)1,2,† and L F Wei(韦联福)2,‡
1 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing & School of Physics and Astronomy, Sun Yat-Sen University(Zhuhai Campus), Zhuhai 519082, China;
2 Information Quantum Technology Laboratory, School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
Abstract  Multi-path (or multi-mode) entanglement has been proved to be a useful resource for sub-shot-noise sensitivity of phase estimation, which has aroused much research interest in quantum metrology recently. Various schemes of multi-path interferometers based on optical systems have been put forward. Here, we study a multi-state interferometer with multi-level atoms by projective measurements. Specifically, we investigate its ultimate sensitivity described by quantum Fisher information theory and find that the Cramer-Rao bound can be achieved. In particular, we investigate a specific scheme to improve the sensitivity of magnetometery with a three-state interferometry delivered by a single nitrogen-vacancy (NV) center of diamond with tailor pulses. The impacts of imperfections of the atomic beam-splitter, described by the three-level quantum Fourier transform, on the sensitivity of phase estimation is also discussed.
Keywords:  quantum metrology      multi-path interferometers      quantum measurement  
Received:  26 January 2021      Revised:  24 April 2021      Accepted manuscript online:  26 May 2021
PACS:  06.20.-f (Metrology)  
  06.20.Dk (Measurement and error theory)  
  03.75.Dg (Atom and neutron interferometry)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11974290).
Corresponding Authors:  X N Feng, L F Wei     E-mail:;

Cite this article: 

X N Feng(冯夏宁) and L F Wei(韦联福) Multilevel atomic Ramsey interferometry for precise parameter estimations 2021 Chin. Phys. B 30 120601

[1] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[2] Ramsey N F 1950 Phys. Rev. 78 695
[3] Born M and Wolf E 1999 Principles of Optics 7th edn. (New York: Cambridge University Press) pp. 337–338
[4] Pezzé L and Smerzi A 2008 Phys. Rev. Lett. 100 073601
[5] Li H M, Xu X X, Yuan H C and Wang Z 2016 Chin. Phys. B 25 104203
[6] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[7] Jones J A, Karlen S D, Fitzsimons J, Ardavan A, Benjamin S C, Briggs G A D and Morton J J L 2009 Science 324 1166
[8] Katori H 2011 Nat. Photon. 5 203
[9] Vahlbruch H, Chelkowski S, Hage B, Franzen A, Danzmann K and Schnabel R 2006 Phys. Rev. Lett. 97 011101
[10] Schnabel R, Mavalvala N, McClelland D E and Lam P k 2010 Nat. Commun. 1 121
[11] Abbott B P, et al. 2016 Phys. Rev. Lett. 116 241103
[12] Peters A, Chung K Y, Young B, Hensley J and Chu S 1997 Philos. Trans. R. Soc. London Ser. A 355 2223
[13] Angelis M de, Bertoldi A, Cacciapuoti L, Giorgini A, Lamporesi G, Prevedelli M, Saccorotti G, Sorrentino F and Tino G M 2009 Meas. Sci. Technol. 20 22001
[14] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[15] Li W D, He T C and Smerzi A 2014 Phys. Rev. Lett. 113 023003
[16] Gustavson T L, Bouyer P and Kasevich M A 1997 Phys. Rev. Lett. 78 2046
[17] Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Science 304 1476
[18] D’Ariano G M and Paris M G A 1997 Phys. Rev. A 55 2267
[19] Chwedeńczuk J, Piazza F and Smerzi A 2013 Phys. Rev. A 87 033607
[20] Pezzé L and Smerzi A 2013 Phys. Rev. Lett. 110 163604
[21] Anisimov P M 2010 Phys. Rev. Lett. 104 103602
[22] Gross C 2012 J. Phys. B 45 103001
[23] Hou L L, Sui Y X, Wang S and Xu X F 2019 Chin. Phys. B 28 44203
[24] Huelga S F, Macchiavello C, Pellizzari T, Ekert A K, Plenio M B and Cirac J I 1997 Phys. Rev. Lett. 79 3865
[25] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161
[26] Motes K R, Olson J P, Rabeaux E J, Dowling J P, Olson S J and Rohde P P 2015 Phys. Rev. Lett. 114 170802
[27] Olson J P, Motes K R, Birchall P M, Studer N M, LaBorde M, Moulder T and Dowling J P 2017 Phys. Rev. A 96 013810
[28] Dhand I, Khalid A, Lu H and Sanders B C 2016 J. Opt. 18 035204
[29] Cotter J P and Cameron R P 2019 J. Phys. Commun. 3 045012
[30] Crespi A, Osellame R, Ramponi R, Brod D J, Galv an E F, Spagnolo N, Vitelli C, Maiorino E, Mataloni P and Sciarrino F 2013 Nat. Photon. 7 545
[31] Weitz M, Heupel T and Hänsch T W 1996 Phys. Rev. Lett. 77 2356
[32] Zhuang M, Huang J and Lee C 2018 Phys. Rev. A 98 033603
[33] Petrovic J, Herrera I, Lombardi P, Schäfer F and Cataliotti F S 2013 New J. Phys. 15 043002
[34] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[35] Rondin L, Tetienne J P, Hingant T, Roch J F, Maletinsky P and Jacques V 2014 Rep. Prog. Phys. 77 056503
[36] Wang P, Yuan Z, Huang P, Rong X, Wang M, Xu X and Du J 2015 Nat. Commun. 6 6631
[37] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Gurudev Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[38] Klimov A B, Guzmãn R, Retamal J C and Saavedra C 2003 Phys. Rev. A 67 062313
[39] Fang K, Acosta V M, Santori C, Huang Z, Itoh K M, Watanabe H, Shikata S and Beausoleil R G 2013 Phys. Rev. Lett. 110 130802
[40] Mamin H J, Sherwood M H, Kim M, Rettner C T, Ohno K, Awschalom D D and Rugar D 2014 Phys. Rev. Lett. 113 030803
[41] Bauch E, Hart C A, Schloss J M, Turner M J, Barry J F, Kehayias P, Singh S and Walsworth R L 2018 Phys. Rev. X 8 031025
[42] Shin C S, Avalos C E, Butler M C, Wang H J, Seltzer S J, Liu R B, Pines A and Bajaj V S 2013 Phys. Rev. B 88 161412
[43] Matsuzaki Y, Benjamin S, Nakayama S, Saito S and Munro W J 2018 Phys. Rev. Lett. 120 140501
[1] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[2] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[3] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[4] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[5] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[6] Double-dot interferometer for quantum measurement of Majorana qubits and stabilizers
Kai Zhou(周凯), Cheng Zhang(张程), Lupei Qin(秦陆培), and Xin-Qi Li(李新奇). Chin. Phys. B, 2021, 30(1): 010301.
[7] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[8] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[9] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[10] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[11] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[12] Demonstration of quantum anti-Zeno effect with a single trapped ion
Man-Chao Zhang(张满超), Wei Wu(吴伟), Lin-Ze He(何林泽), Yi Xie(谢艺), Chun-Wang Wu(吴春旺), Quan Li(黎全), Ping-Xing Chen(陈平形). Chin. Phys. B, 2018, 27(9): 090305.
[13] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[14] Super-sensitive phase estimation with coherent boosted light using parity measurements
Lan Xu(许兰), Qing-Shou Tan(谭庆收). Chin. Phys. B, 2018, 27(1): 014203.
[15] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
No Suggested Reading articles found!